Excellence in Research and Innovation for Humanity

John Kabuba

Publications

7

Publications

7
1075
Kinetics Study of Ammonia Removal from Synthetic Waste Water
Abstract:
The aim of this study was to investigate ammonium exchange capacity of natural and activated clinoptilolite from Kwazulu-Natal Province, South Africa. X – ray fluorescence (XRF) analysis showed that the clinoptilolite contained exchangeable ions of sodium, potassium, calcium and magnesium. This analysis also confirmed that the zeolite sample had a high silicon composition compared to aluminium. Batch equilibrium studies were performed in an orbital shaker and the data fitted the Langmuir isotherm very well. The ammonium exchange capacity was found to increase with pH and temperature. Clinoptilolite functionalization with hydrochloric acid increased its ammonia uptake ability.
Keywords:
Activated clinoptilolite, Ammonium exchange,Equilibrium, Functionalization, Langmuir isotherm
6
9999256
Dissolution of Zeolite as a Sorbent in Flue Gas Desulphurization Process Using a pH Stat Apparatus
Abstract:

Sulphur dioxide is a harmful gaseous product that needs to be minimized in the atmosphere. This research work investigates the use of zeolite as a possible additive that can improve the sulphur dioxide capture in wet flue gas desulphurisation dissolution process. This work determines the effect of temperature, solid to liquid ratio, acid concentration and stirring speed on the leaching of zeolite using a pH stat apparatus. The atomic absorption spectrometer was used to measure the calcium ions from the solution. It was found that the dissolution rate of zeolite decreased with increase in solid to liquid ratio and increases with increase in temperature, stirring speed and acid concentration. The activation energy for the dissolution rate of zeolite in hydrochloric acid was found to be 9.29kJ/mol. and therefore the product layer diffusion was the rate limiting step.

Keywords:
Calcium ion, pH stat apparatus, wet flue gas desulphurization, zeolite.
5
3648
Binary Mixture of Copper-Cobalt Ions Uptake by Zeolite using Neural Network
Abstract:
In this study a neural network (NN) was proposed to predict the sorption of binary mixture of copper-cobalt ions into clinoptilolite as ion-exchanger. The configuration of the backpropagation neural network giving the smallest mean square error was three-layer NN with tangent sigmoid transfer function at hidden layer with 10 neurons, linear transfer function at output layer and Levenberg-Marquardt backpropagation training algorithm. Experiments have been carried out in the batch reactor to obtain equilibrium data of the individual sorption and the mixture of coppercobalt ions. The obtained modeling results have shown that the used of neural network has better adjusted the equilibrium data of the binary system when compared with the conventional sorption isotherm models.
Keywords:
Adsorption isotherm, binary system, neural network; sorption
4
5968
A Critics Study of Neural Networks Applied to ion-Exchange Process
Abstract:
This paper presents a critical study about the application of Neural Networks to ion-exchange process. Ionexchange is a complex non-linear process involving many factors influencing the ions uptake mechanisms from the pregnant solution. The following step includes the elution. Published data presents empirical isotherm equations with definite shortcomings resulting in unreliable predictions. Although Neural Network simulation technique encounters a number of disadvantages including its “black box", and a limited ability to explicitly identify possible causal relationships, it has the advantage to implicitly handle complex nonlinear relationships between dependent and independent variables. In the present paper, the Neural Network model based on the back-propagation algorithm Levenberg-Marquardt was developed using a three layer approach with a tangent sigmoid transfer function (tansig) at hidden layer with 11 neurons and linear transfer function (purelin) at out layer. The above mentioned approach has been used to test the effectiveness in simulating ion exchange processes. The modeling results showed that there is an excellent agreement between the experimental data and the predicted values of copper ions removed from aqueous solutions.
Keywords:
Copper, ion-exchange process, neural networks, simulation
3
15173
Modeling of Co-Cu Elution From Clinoptilolite using Neural Network
Abstract:

The elution process for the removal of Co and Cu from clinoptilolite as an ion-exchanger was investigated using three parameters: bed volume, pH and contact time. The present paper study has shown quantitatively that acid concentration has a significant effect on the elution process. The favorable eluant concentration was found to be 2 M HCl and 2 M H2SO4, respectively. The multi-component equilibrium relationship in the process can be very complex, and perhaps ill-defined. In such circumstances, it is preferable to use a non-parametric technique such as Neural Network to represent such an equilibrium relationship.

Keywords:
Clinoptilolite, elution, modeling, neural network.
2
9999211
Parameters Affecting the Removal of Copper and Cobalt from Aqueous Solution onto Clinoptiloliteby Ion-Exchange Process
Abstract:

Ion exchange is one of the methods used to remove heavy metal such as copper and cobalt from wastewaters. Parameters affecting the ion-exchange of copper and cobalt aqueous solutions using clinoptilolite are the objectives of this study. Synthetic solutions were prepared with the concentration of 0.02M, 0.06M and 0.1M. The cobalt solution was maintained to 0.02M while varying the copper solution to the above stated concentrations. The clinoptilolite was activated with HCl and H2SO4 for removal efficiency. The pHs of the solutions were found to be acidic hence enhancing the copper and cobalt removal. The natural clinoptilolite performance was also found to be lower compared to the HCl and H2SO4 activated one for the copper removal ranging from 68% to 78% of Cu2+ uptake with the natural clinoptilolite to 66% to 51% with HCl and H2SO4 respectively. It was found that the activated clinoptilolite removed more copper and cobalt than the natural one and found that the electronegativity of the metal plays a role in the metal removal and the clinoptilolite selectivity.

Keywords:
Clinoptilolite, cobalt and copper, Ion-exchange, mass dosage, pH.
1
9999212
Application of Neural Network on the Loading of Copper onto Clinoptilolite
Authors:
Abstract:

The study investigated the implementation of the Neural Network (NN) techniques for prediction of the loading of Cu ions onto clinoptilolite. The experimental design using analysis of variance (ANOVA) was chosen for testing the adequacy of the Neural Network and for optimizing of the effective input parameters (pH, temperature and initial concentration). Feed forward, multi-layer perceptron (MLP) NN successfully tracked the non-linear behavior of the adsorption process versus the input parameters with mean squared error (MSE), correlation coefficient (R) and minimum squared error (MSRE) of 0.102, 0.998 and 0.004 respectively. The results showed that NN modeling techniques could effectively predict and simulate the highly complex system and non-linear process such as ionexchange.

Keywords:
Clinoptilolite, loading, modeling, Neural network.