Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 33

33
10007883
Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime
Abstract:
Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.
32
10007582
Performance Analysis of ERA Using Fuzzy Logic in Wireless Sensor Network
Abstract:

In Wireless Sensor Network (WSN), the main limitation is generally inimitable energy consumption during processing of the sensor nodes. Cluster head (CH) election is one of the main issues that can reduce the energy consumption. Therefore, discovering energy saving routing protocol is the focused area for research. In this paper, fuzzy-based energy aware routing protocol is presented, which enhances the stability and network lifetime of the network. Fuzzy logic ensures the well-organized selection of CH by taking four linguistic variables that are concentration, energy, centrality, and distance to base station (BS). The results show that the proposed protocol shows better results in requisites of stability and throughput of the network.

31
10006993
Energy-Efficient Clustering Protocol in Wireless Sensor Networks for Healthcare Monitoring
Abstract:
Wireless sensor networks (WSNs) can facilitate continuous monitoring of patients and increase early detection of emergency conditions and diseases. High density WSNs helps us to accurately monitor a remote environment by intelligently combining the data from the individual nodes. Due to energy capacity limitation of sensors, enhancing the lifetime and the reliability of WSNs are important factors in designing of these networks. The clustering strategies are verified as effective and practical algorithms for reducing energy consumption in WSNs and can tackle WSNs limitations. In this paper, an Energy-efficient weight-based Clustering Protocol (EWCP) is presented. Artificial retina is selected as a case study of WSNs applied in body sensors. Cluster heads’ (CHs) selection is equipped with energy efficient parameters. Moreover, cluster members are selected based on their distance to the selected CHs. Comparing with the other benchmark protocols, the lifetime of EWCP is improved significantly.
30
10006562
Optimized Energy Scheduling Algorithm for Energy Efficient Wireless Sensor Networks
Abstract:

Wireless sensor networks can be tiny, low cost, intelligent sensors connected with advanced communication systems. WSNs have pulled in significant consideration as a matter of fact that, industrial as well as medical solicitations employ these in monitoring targets, conservational observation, obstacle exposure, movement regulator etc. In these applications, sensor hubs are thickly sent in the unattended environment with little non-rechargeable batteries. This constraint requires energy-efficient systems to drag out the system lifetime. There are redundancies in data sent over the network. To overcome this, multiple virtual spine scheduling has been presented. Such networks problems are called Maximum Lifetime Backbone Scheduling (MLBS) problems. Though this sleep wake cycle reduces radio usage, improvement can be made in the path in which the group heads stay selected. Cluster head selection with emphasis on geometrical relation of the system will enhance the load sharing among the nodes. Also the data are analyzed to reduce redundant transmission. Multi-hop communication will facilitate lighter loads on the network.

29
10005583
Proposal of Commutation Protocol in Hybrid Sensors and Vehicular Networks for Intelligent Transport Systems
Abstract:

Hybrid Sensors and Vehicular Networks (HSVN), represent a hybrid network, which uses several generations of Ad-Hoc networks. It is used especially in Intelligent Transport Systems (ITS). The HSVN allows making collaboration between the Wireless Sensors Network (WSN) deployed on the border of the road and the Vehicular Network (VANET). This collaboration is defined by messages exchanged between the two networks for the purpose to inform the drivers about the state of the road, provide road safety information and more information about traffic on the road. Moreover, this collaboration created by HSVN, also allows the use of a network and the advantage of improving another network. For example, the dissemination of information between the sensors quickly decreases its energy, and therefore, we can use vehicles that do not have energy constraint to disseminate the information between sensors. On the other hand, to solve the disconnection problem in VANET, the sensors can be used as gateways that allow sending the messages received by one vehicle to another. However, because of the short communication range of the sensor and its low capacity of storage and processing of data, it is difficult to ensure the exchange of road messages between it and the vehicle, which can be moving at high speed at the time of exchange. This represents the time where the vehicle is in communication range with the sensor. This work is the proposition of a communication protocol between the sensors and the vehicle used in HSVN. The latter has as the purpose to ensure the exchange of road messages in the available time of exchange.

Keywords:
28
10004495
Data Collection with Bounded-Sized Messages in Wireless Sensor Networks
Authors:
Abstract:
In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.
27
10005307
Tree Based Data Fusion Clustering Routing Algorithm for Illimitable Network Administration in Wireless Sensor Network
Abstract:

In wireless sensor networks, locality and positioning information can be captured using Global Positioning System (GPS). This message can be congregated initially from spot to identify the system. Users can retrieve information of interest from a wireless sensor network (WSN) by injecting queries and gathering results from the mobile sink nodes. Routing is the progression of choosing optimal path in a mobile network. Intermediate node employs permutation of device nodes into teams and generating cluster heads that gather the data from entity cluster’s node and encourage the collective data to base station. WSNs are widely used for gathering data. Since sensors are power-constrained devices, it is quite vital for them to reduce the power utilization. A tree-based data fusion clustering routing algorithm (TBDFC) is used to reduce energy consumption in wireless device networks. Here, the nodes in a tree use the cluster formation, whereas the elevation of the tree is decided based on the distance of the member nodes to the cluster-head. Network simulation shows that this scheme improves the power utilization by the nodes, and thus considerably improves the lifetime.

26
10005844
Enhancing the Performance of Wireless Sensor Networks Using Low Power Design
Abstract:
Wireless sensor networks (WSNs), are constantly in demand to process information more rapidly with less energy and area cost. Presently, processor based solutions have difficult to achieve high processing speed with low-power consumption. This paper presents a simple and accurate data processing scheme for low power wireless sensor node, based on reduced number of processing element (PE). The presented model provides a simple recursive structure (SRS) to process the sampled data in the wireless sensor environment and to reduce the power consumption in wireless sensor node. Based on this model, to process the incoming samples and produce a smaller amount of data sufficient to reconstruct the original signal. The ModelSim simulator used to simulate SRS structure. Functional simulation is carried out for the validation of the presented architecture. Xilinx Power Estimator (XPE) tool is used to measure the power consumption. The experimental results show the average power consumption of 91 mW; this is 42% improvement compared to the folded tree architecture.
25
10002590
Adaptive Routing Protocol for Dynamic Wireless Sensor Networks
Abstract:
The main issue in designing a wireless sensor network (WSN) is the finding of a proper routing protocol that complies with the several requirements of high reliability, short latency, scalability, low power consumption, and many others. This paper proposes a novel routing algorithm that complies with these design requirements. The new routing protocol divides the WSN into several subnetworks and each sub-network is divided into several clusters. This division is designed to reduce the number of radio transmission and hence decreases the power consumption. The network division may be changed dynamically to adapt with the network changes and allows the realization of the design requirements.
24
10002297
The Selection of the Nearest Anchor Using Received Signal Strength Indication (RSSI)
Abstract:
The localization information is crucial for the operation of WSN. There are principally two types of localization algorithms. The Range-based localization algorithm has strict requirements on hardware, thus is expensive to be implemented in practice. The Range-free localization algorithm reduces the hardware cost. However, it can only achieve high accuracy in ideal scenarios. In this paper, we locate unknown nodes by incorporating the advantages of these two types of methods. The proposed algorithm makes the unknown nodes select the nearest anchor using the Received Signal Strength Indicator (RSSI) and choose two other anchors which are the most accurate to achieve the estimated location. Our algorithm improves the localization accuracy compared with previous algorithms, which has been demonstrated by the simulating results.
23
10002064
Heuristic Search Algorithm (HSA) for Enhancing the Lifetime of Wireless Sensor Networks
Abstract:
The lifetime of a wireless sensor network can be effectively increased by using scheduling operations. Once the sensors are randomly deployed, the task at hand is to find the largest number of disjoint sets of sensors such that every sensor set provides complete coverage of the target area. At any instant, only one of these disjoint sets is switched on, while all other are switched off. This paper proposes a heuristic search method to find the maximum number of disjoint sets that completely cover the region. A population of randomly initialized members is made to explore the solution space. A set of heuristics has been applied to guide the members to a possible solution in their neighborhood. The heuristics escalate the convergence of the algorithm. The best solution explored by the population is recorded and is continuously updated. The proposed algorithm has been tested for applications which require sensing of multiple target points, referred to as point coverage applications. Results show that the proposed algorithm outclasses the existing algorithms. It always finds the optimum solution, and that too by making fewer number of fitness function evaluations than the existing approaches.
22
10002224
Wireless Sensor Network to Help Low Incomes Farmers to Face Drought Impacts
Abstract:
This research presents the main ideas to implement an intelligent system composed by communicating wireless sensors measuring environmental data linked to drought indicators (such as air temperature, soil moisture , etc...). On the other hand, the setting up of a spatio temporal database communicating with a Web mapping application for a monitoring in real time in activity 24:00 /day, 7 days/week is proposed to allow the screening of the drought parameters time evolution and their extraction. Thus this system helps detecting surfaces touched by the phenomenon of drought. Spatio-temporal conceptual models seek to answer the users who need to manage soil water content for irrigating or fertilizing or other activities pursuing crop yield augmentation. Effectively, spatiotemporal conceptual models enable users to obtain a diagram of readable and easy data to apprehend. Based on socio-economic information, it helps identifying people impacted by the phenomena with the corresponding severity especially that this information is accessible by farmers and stakeholders themselves. The study will be applied in Siliana watershed Northern Tunisia.
21
10002914
Energy Efficient Data Aggregation in Sensor Networks with Optimized Cluster Head Selection
Abstract:
Wireless Sensor Network (WSN) routing is complex due to its dynamic nature, computational overhead, limited battery life, non-conventional addressing scheme, self-organization, and sensor nodes limited transmission range. An energy efficient routing protocol is a major concern in WSN. LEACH is a hierarchical WSN routing protocol to increase network life. It performs self-organizing and re-clustering functions for each round. This study proposes a better sensor networks cluster head selection for efficient data aggregation. The algorithm is based on Tabu search.
20
10001758
Multipath Routing Protocol Using Basic Reconstruction Routing (BRR) Algorithm in Wireless Sensor Network
Abstract:
A sensory network consists of multiple detection locations called sensor nodes, each of which is tiny, featherweight and portable. A single path routing protocols in wireless sensor network can lead to holes in the network, since only the nodes present in the single path is used for the data transmission. Apart from the advantages like reduced computation, complexity and resource utilization, there are some drawbacks like throughput, increased traffic load and delay in data delivery. Therefore, multipath routing protocols are preferred for WSN. Distributing the traffic among multiple paths increases the network lifetime. We propose a scheme, for the data to be transmitted through a dominant path to save energy. In order to obtain a high delivery ratio, a basic route reconstruction protocol is utilized to reconstruct the path whenever a failure is detected. A basic reconstruction routing (BRR) algorithm is proposed, in which a node can leap over path failure by using the already existing routing information from its neighbourhood while the composed data is transmitted from the source to the sink. In order to save the energy and attain high data delivery ratio, data is transmitted along a multiple path, which is achieved by BRR algorithm whenever a failure is detected. Further, the analysis of how the proposed protocol overcomes the drawback of the existing protocols is presented. The performance of our protocol is compared to AOMDV and energy efficient node-disjoint multipath routing protocol (EENDMRP). The system is implemented using NS-2.34. The simulation results show that the proposed protocol has high delivery ratio with low energy consumption.
19
10002124
Performance Evaluation of XMAC and BMAC Routing Protocol under Static and Mobility Scenarios in Wireless Sensor Network
Abstract:
Based on application requirements, nodes are static or mobile in Wireless Sensor Networks (WSNs). Mobility poses challenges in protocol design, especially at the link layer requiring mobility adaptation algorithms to localize mobile nodes and predict link quality to be established with them. This study implements XMAC and Berkeley Media Access Control (BMAC) routing protocols to evaluate performance under WSN’s static and mobility conditions. This paper gives a comparative study of mobility-aware MAC protocols. Routing protocol performance, based on Average End to End Delay, Average Packet Delivery Ratio, Average Number of hops, and Jitter is evaluated.
18
10001520
Modeling UWSN Simulators – A Taxonomy
Abstract:
In this research article of modeling Underwater Wireless Sensor Network Simulators, we provide a comprehensive overview of the various currently available simulators used in UWSN modeling. In this work, we compare their working environment, software platform, simulation language, key features, limitations and corresponding applications. Based on extensive experimentation and performance analysis, we provide their efficiency for specific applications. We have also provided guidelines for developing protocols in different layers of the protocol stack, and finally these parameters are also compared and tabulated. This analysis is significant for researchers and designers to find the right simulator for their research activities.
17
10000281
Harmony Search-based K-Coverage Enhancement in Wireless Sensor Networks
Abstract:

Many wireless sensor network applications require K-coverage of the monitored area. In this paper, we propose a scalable harmony search based algorithm in terms of execution time, K-Coverage Enhancement Algorithm (KCEA), it attempts to enhance initial coverage, and achieve the required K-coverage degree for a specific application efficiently. Simulation results show that the proposed algorithm achieves coverage improvement of 5.34% compared to K-Coverage Rate Deployment (K-CRD), which achieves 1.31% when deploying one additional sensor. Moreover, the proposed algorithm is more time efficient.

16
10000089
A Survey of Attacks and Security Requirements in Wireless Sensor Networks
Abstract:

Wireless sensor network (WSN) is a network of many interconnected networked systems, they equipped with energy resources and they are used to detect other physical characteristics. On WSN, there are many researches are performed in past decades. WSN applicable in many security systems govern by military and in many civilian related applications. Thus, the security of WSN gets attention of researchers and gives an opportunity for many future aspects. Still, there are many other issues are related to deployment and overall coverage, scalability, size, energy efficiency, quality of service (QoS), computational power and many more. In this paper we discus about various applications and security related issue and requirements of WSN.

15
10000031
Distributed Self-Healing Protocol for Unattended Wireless Sensor Network
Abstract:

Wireless sensor network is vulnerable to a wide range of attacks. Recover secrecy after compromise, to develop technique that can detect intrusions and able to resilient networks that isolates the point(s) of intrusion while maintaining network connectivity for other legitimate users. To define new security metrics to evaluate collaborative intrusion resilience protocol, by leveraging the sensor mobility that allows compromised sensors to recover secure state after compromise. This is obtained with very low overhead and in a fully distributed fashion using extensive simulations support our findings.

14
9999733
Dual Band Fractal Antenna for Wireless Sensor Network Application
Abstract:

A wireless sensor network (WSN) is a collection of sensor nodes organized into a cooperative network. These nodes communicate through a wireless antenna. Reduction in physical size and multiband operation is an important requirement of WSN antenna. Fractal antenna is used for miniaturization and multiband operation. The self-similar or self-affine and space filling property of fractal geometry increases the effective electrical length of the antenna, reduces the size and make them frequency independent. This paper elaborates on Dual band fractal antenna with Coplanar Waveguide (CPW) feed for WSN. The proposed antenna is designed on a FR4 substrate with the dimension of 27mm x 28.5mm x 1.6mm, resonates at 2.4GHz and 5.2GHz with a return loss less than -10dB. The design and simulation process is carried out using IE3D simulation software. The simulated and measured results are found in good agreement.

13
9996619
Greenhouse Micro Climate Monitoring Based On WSN with Smart Irrigation Technique
Abstract:

Greenhouse is a building, which provides controlled climate conditions to the plants to keep them from external hard conditions. Greenhouse technology gives freedom to the farmer to select any crop type in any time during year. The quality and productivity of plants inside greenhouse is highly dependent on the management quality and a good management scheme is defined by the quality of the information collected from the greenhouse environment. Therefore, Continuous monitoring of environmental variables such as temperature, humidity, and soil moisture gives information to the grower to better understand, how each factor affects growth and how to manage maximal crop productiveness. In this piper, we designed and implemented climate monitoring with irrigation control system based on Wireless Sensor Network (WSN) technology. The designed system is characterized with friendly to use, easy to install by any greenhouse user, multi-sensing nodes, multi-PAN ID, low cast, water irrigation control and low operation complexity. The system consists of two node types (sensing and control) with star topology on one PAN ID. Moreover, greenhouse manager can modifying system parameters such as (sensing node addresses, irrigation upper and lower control limits) by updating corresponding data in SDRAM memory. In addition, the designed system uses 2*16 characters. LCD to display the micro climate parameters values of each plants row inside the greenhouse.

12
4632
REDD: Reliable Energy-Efficient Data Dissemination in Wireless Sensor Networks with Multiple Mobile Sinks
Abstract:
In wireless sensor network (WSN) the use of mobile sink has been attracting more attention in recent times. Mobile sinks are more effective means of balancing load, reducing hotspot problem and elongating network lifetime. The sensor nodes in WSN have limited power supply, computational capability and storage and therefore for continuous data delivery reliability becomes high priority in these networks. In this paper, we propose a Reliable Energy-efficient Data Dissemination (REDD) scheme for WSNs with multiple mobile sinks. In this strategy, sink first determines the location of source and then directly communicates with the source using geographical forwarding. Every forwarding node (FN) creates a local zone comprising some sensor nodes that can act as representative of FN when it fails. Analytical and simulation study reveals significant improvement in energy conservation and reliable data delivery in comparison to existing schemes.
11
2199
An Energy Aware Dispatch Scheme WSNs
Abstract:

One of the key research issues in wireless sensor networks (WSNs) is how to efficiently deploy sensors to cover an area. In this paper, we present a Fishnet Based Dispatch Scheme (FiBDS) with energy aware mobility and interest based sensing angle. We propose two algorithms, one is FiBDS centralized algorithm and another is FiBDS distributed algorithm. The centralized algorithm is designed specifically for the non-time critical applications, commonly known as non real-time applications while the distributed algorithm is designed specifically for the time critical applications, commonly known as real-time applications. The proposed dispatch scheme works in a phase-selection manner. In this in each phase a specific constraint is dealt with according to the specified priority and then moved onto the next phase and at the end of each only the best suited nodes for the phase are chosen. Simulation results are presented to verify their effectiveness. 

10
7795
Energy Efficient Cooperative Caching in WSN
Abstract:
Wireless sensor networks (WSNs) consist of number of tiny, low cost and low power sensor nodes to monitor some physical phenomenon. The major limitation in these networks is the use of non-rechargeable battery having limited power supply. The main cause of energy consumption in such networks is communication subsystem. This paper presents an energy efficient Cluster Cooperative Caching at Sensor (C3S) based upon grid type clustering. Sensor nodes belonging to the same cluster/grid form a cooperative cache system for the node since the cost for communication with them is low both in terms of energy consumption and message exchanges. The proposed scheme uses cache admission control and utility based data replacement policy to ensure that more useful data is retained in the local cache of a node. Simulation results demonstrate that C3S scheme performs better in various performance metrics than NICoCa which is existing cooperative caching protocol for WSNs.
9
11688
Cooperative Data Caching in WSN
Abstract:
Wireless sensor networks (WSNs) have gained tremendous attention in recent years due to their numerous applications. Due to the limited energy resource, energy efficient operation of sensor nodes is a key issue in wireless sensor networks. Cooperative caching which ensures sharing of data among various nodes reduces the number of communications over the wireless channels and thus enhances the overall lifetime of a wireless sensor network. In this paper, we propose a cooperative caching scheme called ZCS (Zone Cooperation at Sensors) for wireless sensor networks. In ZCS scheme, one-hop neighbors of a sensor node form a cooperative cache zone and share the cached data with each other. Simulation experiments show that the ZCS caching scheme achieves significant improvements in byte hit ratio and average query latency in comparison with other caching strategies.
8
7582
Handling Mobility using Virtual Grid in Static Wireless Sensor Networks
Authors:
Abstract:
Querying a data source and routing data towards sink becomes a serious challenge in static wireless sensor networks if sink and/or data source are mobile. Many a times the event to be observed either moves or spreads across wide area making maintenance of continuous path between source and sink a challenge. Also, sink can move while query is being issued or data is on its way towards sink. In this paper, we extend our already proposed Grid Based Data Dissemination (GBDD) scheme which is a virtual grid based topology management scheme restricting impact of movement of sink(s) and event(s) to some specific cells of a grid. This obviates the need for frequent path modifications and hence maintains continuous flow of data while minimizing the network energy consumptions. Simulation experiments show significant improvements in network energy savings and average packet delay for a packet to reach at sink.
7
7790
Challenges for Security in Wireless Sensor Networks (WSNs)
Abstract:

Wireless sensor network is formed with the combination of sensor nodes and sink nodes. Recently Wireless sensor network has attracted attention of the research community. The main application of wireless sensor network is security from different attacks both for mass public and military. However securing these networks, by itself is a critical issue due to many constraints like limited energy, computational power and lower memory. Researchers working in this area have proposed a number of security techniques for this purpose. Still, more work needs to be done.In this paper we provide a detailed discussion on security in wireless sensor networks. This paper will help to identify different obstacles and requirements for security of wireless sensor networks as well as highlight weaknesses of existing techniques.

6
15357
A Beacon Based Priority Routing Scheme for Solar Power Plants in WSNs
Abstract:
Solar power plants(SPPs) have shown a lot of good outcomes in providing a various functions depending on industrial expectations by deploying ad-hoc networking with helps of light loaded and battery powered sensor nodes. In particular, it is strongly requested to develop an algorithm to deriver the sensing data from the end node of solar power plants to the sink node on time. In this paper, based on the above observation we have proposed an IEEE802.15.4 based self routing scheme for solar power plants. The proposed beacon based priority routing Algorithm (BPRA) scheme utilizes beacon periods in sending message with embedding the high priority data and thus provides high quality of service(QoS) in the given criteria. The performance measures are the packet Throughput, delivery, latency, total energy consumption. Simulation results under TinyOS Simulator(TOSSIM) have shown the proposed scheme outcome the conventional Ad hoc On-Demand Distance Vector(AODV) Routing in solar power plants.
5
2613
Wireless Sensor Networks for Swiftlet Farms Monitoring
Abstract:
This paper provides an in-depth study of Wireless Sensor Network (WSN) application to monitor and control the swiftlet habitat. A set of system design is designed and developed that includes the hardware design of the nodes, Graphical User Interface (GUI) software, sensor network, and interconnectivity for remote data access and management. System architecture is proposed to address the requirements for habitat monitoring. Such applicationdriven design provides and identify important areas of further work in data sampling, communications and networking. For this monitoring system, a sensor node (MTS400), IRIS and Micaz radio transceivers, and a USB interfaced gateway base station of Crossbow (Xbow) Technology WSN are employed. The GUI of this monitoring system is written using a Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) along with Xbow Technology drivers provided by National Instrument. As a result, this monitoring system is capable of collecting data and presents it in both tables and waveform charts for further analysis. This system is also able to send notification message by email provided Internet connectivity is available whenever changes on habitat at remote sites (swiftlet farms) occur. Other functions that have been implemented in this system are the database system for record and management purposes; remote access through the internet using LogMeIn software. Finally, this research draws a conclusion that a WSN for monitoring swiftlet habitat can be effectively used to monitor and manage swiftlet farming industry in Sarawak.
4
11833
Performance Analysis of Routing Protocol for WSN Using Data Centric Approach
Abstract:
Sensor Network are emerging as a new tool for important application in diverse fields like military surveillance, habitat monitoring, weather, home electrical appliances and others. Technically, sensor network nodes are limited in respect to energy supply, computational capacity and communication bandwidth. In order to prolong the lifetime of the sensor nodes, designing efficient routing protocol is very critical. In this paper, we illustrate the existing routing protocol for wireless sensor network using data centric approach and present performance analysis of these protocols. The paper focuses in the performance analysis of specific protocol namely Directed Diffusion and SPIN. This analysis reveals that the energy usage is important features which need to be taken into consideration while designing routing protocol for wireless sensor network.
Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007