Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Abstract Count: 46707

A Survey on Concurrency Control Methods in Distributed Database
In the last years, remarkable improvements have been made in the ability of distributed database systems performance. A distributed database is composed of some sites which are connected to each other through network connections. In this system, if good harmonization is not made between different transactions, it may result in database incoherence. Nowadays, because of the complexity of many sites and their connection methods, it is difficult to extend different models in distributed database serially. The principle goal of concurrency control in distributed database is to ensure not interfering in accessibility of common database by different sites. Different concurrency control algorithms have been suggested to use in distributed database systems. In this paper, some available methods have been introduced and compared for concurrency control in distributed database.
The Quotation-Based Algorithm for Distributed Decision Making
The article proposes to use so-called "quotation-based algorithm" for simulation of decision making process in distributed expert systems and multi-agent systems. The idea was adopted from the techniques for group decision-making. It is based on the assumption that one expert system to perform its logical inference may use rules from another expert system. The application of the algorithm was demonstrated on the example in which the consolidated decision is the decision that requires minimal quotation.
Voltage Profile Enhancement in the Unbalanced Distribution Systems during Fault Conditions
Electric power systems are daily exposed to service interruption mainly due to faults and human accidental interference. Short circuit currents are responsible for several types of disturbances in power systems. The fault currents are high and the voltages are reduced at the time of fault. This paper presents two suitable methods, consideration of fault resistance and Distributed Generator are implemented and analyzed for the enhancement of voltage profile during fault conditions. Fault resistance is a critical parameter of electric power systems operation due to its stochastic nature. If not considered, this parameter may interfere in fault analysis studies and protection scheme efficiency. The effect of Distributed Generator is also considered. The proposed methods are tested on the IEEE 37 bus test systems and the results are compared.
Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System
The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets.
Merging of Results in Distributed Information Retrieval Systems
This work is located in the domain of distributed information retrieval ‘DIR’. A simplified view of the DIR requires a multi-search in a set of collections, which forces the system to analyze results found in these collections, and merge results back before sending them to the user in a single list. Our work is to find a fusion method based on the relevance score of each result received from collections and the relevance of the local search engine of each collection.
Method of Successive Approximations for Modeling of Distributed Systems
A new method of mathematical modeling of the distributed nonlinear system is developed. The system is represented by a combination of the set of spatially distributed sensors and the fusion center. Its mathematical model is obtained from the iterative procedure that converges to the model which is optimal in the sense of minimizing an associated cost function.
A Proposed Query Optimization Strategy for Autonomous Distributed Database Systems
Distributed database is a collection of logically related databases that cooperate in a transparent manner. Query processing uses a communication network for transmitting data between sites. It refers to one of the challenges in the database world. The development of sophisticated query optimization technology is the reason for the commercial success of database systems, which complexity and cost increase with increasing number of relations in the query. Mariposa, query trading and query trading with processing task-trading strategies developed for autonomous distributed database systems, but they cause high optimization cost because of involvement of all nodes in generating an optimal plan. In this paper, we proposed a modification on the autonomous strategy K-QTPT that make the seller’s nodes with the lowest cost have gradually high priorities to reduce the optimization time. We implement our proposed strategy and present the results and analysis based on those results.
An Architecture for New Generation of Distributed Intrusion Detection System Based on Preventive Detection
The design and implementation of intrusion detection systems (IDS) remain an important area of research in the security of information systems. Despite the importance and reputation of the current intrusion detection systems, their efficiency and effectiveness remain limited as they should include active defense approach to allow anticipating and predicting intrusions before their occurrence. Consequently, they must be readapted. For this purpose we suggest a new generation of distributed intrusion detection system based on preventive detection approach and using intelligent and mobile agents. Our architecture benefits from mobile agent features and addresses some of the issues with centralized and hierarchical models. Also, it presents advantages in terms of increasing scalability and flexibility.
Sensitivity Analysis for 14 Bus Systems in a Distribution Network with Distributed Generators
There has been a formidable interest in the area of Distributed Generation in recent times. A wide number of loads are addressed by Distributed Generators and have better efficiency too. The major disadvantage in Distributed Generation is voltage control- is highlighted in this paper. The paper addresses voltage control at buses in IEEE 14 Bus system by regulating reactive power. An analysis is carried out by selecting the most optimum location in placing the Distributed Generators through load flow analysis and seeing where the voltage profile rises. MATLAB programming is used for simulation of voltage profile in the respective buses after introduction of DG’s. A tolerance limit of +/-5% of the base value has to be maintained. To maintain the tolerance limit, 3 methods are used. Sensitivity analysis of 3 methods for voltage control is carried out to determine the priority among the methods.
Performance Evaluation of Distributed and Co-Located MIMO LTE Physical Layer Using Wireless Open-Access Research Platform
In this paper, we evaluate the benefits of distributed 4x4 MIMO LTE downlink systems compared to that of the co-located 4x4 MIMO LTE downlink system. The performance evaluation was carried out experimentally by using Wireless Open-Access Research Platform (WARP), where the comparison between the 4x4 MIMO LTE transmission downlink system in distributed and co-located techniques was examined. The measured Error Vector Magnitude (EVM) results showed that the distributed technique achieved better system performance compared to the co-located arrangement.
Sensitivity Analysis for 14 Bus Systems in a Distribution Network with Distribution Generators
There has been a formidable interest in the area of Distributed Generation in recent times. A wide number of loads are addressed by Distributed Generators and have better efficiency too. The major disadvantage in Distributed Generation is voltage control- is highlighted in this paper. The paper addresses voltage control at buses in IEEE 14 Bus system by regulating reactive power. An analysis is carried out by selecting the most optimum location in placing the Distributed Generators through load flow analysis and seeing where the voltage profile rises. Matlab programming is used for simulation of voltage profile in the respective buses after introduction of DG’s. A tolerance limit of +/-5% of the base value has to be maintained.To maintain the tolerance limit , 3 methods are used. Sensitivity analysis of 3 methods for voltage control is carried out to determine the priority among the methods.
A Novel Microcontroller Based Islanding Protection of Distributed Generation Systems
The customer demand for better power quality and higher reliability has forced the power industry to use distributed generations (DGs) such as wind power and photo voltaic arrays. Islanding is a phenomenon occurs when a power grid becomes electrically isolated from the power system and the distribution system is energized by distributed generators. It is necessary to disconnect all distributed generators immediately after islanding occurrence. Therefore a DG system should have the capability to detect islanding phenomena. In this paper, a novel micro controller based relay for anti-islanding protection of a typical DG system is proposed. The simulation results using Proteus software verify the proper operation and effectiveness of the proposed protective relay.
Intrusion Detection System Based on Peer to Peer
Recently by the extension of internet usage, Research on the intrusion detection system takes a significant importance. Many of improvement systems prevent internal and external network attacks by providing security through firewalls and antivirus. In recently years, intrusion detection systems gradually turn from host-based systems and depend on O.S to the distributed systems which are running on multiple O.S. In this work, by considering the diversity of computer networks whit respect to structure, architecture, resource, services, users and also security goals requirement a fully distributed collaborative intrusion detection system based on peer to peer architecture is suggested. in this platform each partner device (matched device) considered as a peer-to-peer network. All transmitted information to network are visible only for device that use security scanning of a source. Experimental results show that the distributed architecture is significantly upgradeable in respect to centralized approach.
Composite Distributed Generation and Transmission Expansion Planning Considering Security
During the recent past, due to the increase of electrical energy demand and governmental resources constraints in creating additional capacity in the generation, transmission, and distribution, privatization, and restructuring in electrical industry have been considered. So, in most of the countries, different parts of electrical industry like generation, transmission, and distribution have been separated in order to create competition. Considering these changes, environmental issues, energy growth, investment of private equity in energy generation units and difficulties of transmission lines expansion, distributed generation (DG) units have been used in power systems. Moreover, reduction in the need for transmission and distribution, the increase of reliability, improvement of power quality, and reduction of power loss have caused DG to be placed in power systems. On the other hand, considering low liquidity need, private investors tend to spend their money for DGs. In this project, the main goal is to offer an algorithm for planning and placing DGs in order to reduce the need for transmission and distribution network.
A Multi Agent Based Protection Scheme for Smart Distribution Network in Presence of Distributed Energy Resources
Conventional electric distribution systems are radial in nature, supplied at one end through a main source. These networks generally have a simple protection system usually implemented using fuses, re-closers, and over-current relays. Recently, great attention has been paid to applying Distributed energy resources (DERs) throughout electric distribution systems. Presence of such generation in a network leads to losing coordination of protection devices. Therefore, it is desired to develop an algorithm which is capable of protecting distribution systems that include DER. On the other hand smart grid brings opportunities to the power system. Fast advancement in communication and measurement techniques accelerates the development of multi agent system (MAS). So in this paper, a new approach for the protection of distribution networks in the presence of DERs is presented base on MAS. The proposed scheme has been implemented on a sample 27-bus distribution network.
Unbalanced Distribution Optimal Power Flow to Minimize Losses with Distributed Photovoltaic Plants
Electric power systems are likely to operate with minimum losses and voltage meeting international standards. This is made possible generally by control actions provide by automatic voltage regulators, capacitors and transformers with on-load tap changer (OLTC). With the development of photovoltaic (PV) systems technology, their integration on distribution networks has increased over the last years to the extent of replacing the above mentioned techniques. The conventional analysis and simulation tools used for electrical networks are no longer able to take into account control actions necessary for studying distributed PV generation impact. This paper presents an unbalanced optimal power flow (OPF) model that minimizes losses with association of active power generation and reactive power control of single-phase and three-phase PV systems. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The unbalance OPF is formulated by current balance equations and solved by primal-dual interior point method. Several simulation cases have been carried out varying the size and location of PV systems and the results show a detailed view of the impact of PV distributed generation on distribution systems.
Hierarchical Control Structure to Control the Power Distribution System Components in Building Systems
Scientific and industrial progress in the past two decades has resulted in energy distribution systems based on power electronics, as an enabling technology in various industries and building management systems can be considered. Grading and standardization module power electronics systems and its use in a distributed control system, a strategy for overcoming the limitations of using this system. The purpose of this paper is to investigate strategies for scheduling and control structure of standard modules is a power electronic systems. This paper introduces the classical control methods and disadvantages of these methods will be discussed, The hierarchical control as a mechanism for distributed control structure of the classification module explains. The different levels of control and communication between these levels are fully introduced. Also continue to standardize software distribution system control structure is discussed. Finally, as an example, the control structure will be presented in a DC distribution system.
An Adaptive Distributed Incremental Association Rule Mining System
Most existing Distributed Association Rule Mining (DARM) systems are still facing several challenges. One of such challenges that have not received the attention of many researchers is the inability of existing systems to adapt to constantly changing databases and mining environments. In this work, an Adaptive Incremental Mining Algorithm (AIMA) is therefore proposed to address these problems. AIMA employed multiple mobile agents for the entire mining process. AIMA was designed to adapt to changes in the distributed databases by mining only the incremental database updates and using this to update the existing rules in order to improve the overall response time of the DARM system. In AIMA, global association rules were integrated incrementally from one data site to another through Results Integration Coordinating Agents. The mining agents in AIMA were made adaptive by defining mining goals with reasoning and behavioral capabilities and protocols that enabled them to either maintain or change their goals. AIMA employed Java Agent Development Environment Extension for designing the internal agents’ architecture. Results from experiments conducted on real datasets showed that the adaptive system, AIMA performed better than the non-adaptive systems with lower communication costs and higher task completion rates.
Optimal Sizing and Placement of Distributed Generators for Profit Maximization Using Firefly Algorithm
This paper presents a firefly based algorithm for optimal sizing and allocation of distributed generators for profit maximization. Distributed generators in the proposed algorithm are of photovoltaic and combined heat and power technologies. Combined heat and power distributed generators are modeled as voltage controlled nodes while photovoltaic distributed generators are modeled as constant power nodes. The proposed algorithm is implemented in MATLAB environment and tested the unbalanced IEEE 37-node feeder. The results show the effectiveness of the proposed algorithm in optimal selection of distributed generators size and site in order to maximize the total system profit.
Distributed Leadership: An Alternative at Higher Education Institutions in Turkey
In today’s world, which takes further steps towards globalization each and every day, societies and cultures are re-shaped while the demands of the changing world are described once more. In this atmosphere, where the speed of change sometimes reaches a terrifying point, it is possible to state that effective leaders are needed more than ever in order to meet the above-stated needs and demands. The question of what effective leadership is keeping its importance on the agenda. Most of the answers to this question has mostly focused on the approach of distributed leadership recently. This study aims at analyzing the applicability of distributed leadership, which is accepted to be an example of effective leadership that can meet the needs of global world, which is changing more and more rapidly nowadays, at higher education institutions in Turkey. Within the framework of this study, first of all, the historical development of distributed leadership is addressed, and then a theoretical framework is drawn for this approach by means of underlying what distributed leadership is and is not. After that, different points of view about the approach are laid out within the borders of opinions expressed by Gronn and Spillane, who are accepted to be the most famous advocators of distributed leadership. Then, exemplar practices of distributed leadership are included in the study before drawing attention to the strengths and weaknesses of this approach. Lastly, the applicability of distributed leadership at higher education institutions in Turkey is analyzed. This study is carried out with the method of literature review by resorting to first- and second-hand sources on distributed leadership.
A Modeling Approach for Blockchain-Oriented Information Systems Design
The blockchain technology is regarded as the most promising technology that has the potential to trigger a technological revolution. However, besides the bitcoin industry, we have not yet seen a large-scale application of blockchain in those domains that are supposed to be impacted, such as supply chain, financial network, and intelligent manufacturing. The reasons not only lie in the difficulties of blockchain implementation, but are also root in the challenges of blockchain-oriented information systems design. As the blockchain members are self-interest actors that belong to organizations with different existing information systems. As they expect different information inputs and outputs of the blockchain application, a common language protocol is needed to facilitate communications between blockchain members. Second, considering the decentralization of blockchain organization, there is not any central authority to organize and coordinate the business processes. Thus, the information systems built on blockchain should support more adaptive business process. This paper aims to address these difficulties by providing a modeling approach for blockchain-oriented information systems design. We will investigate the information structure of distributed-ledger data with conceptual modeling techniques and ontology theories, and build an effective ontology mapping method for the inter-organization information flow and blockchain information records. Further, we will study the distributed-ledger-ontology based business process modeling to support adaptive enterprise on blockchain.
A Modeling Approach for Blockchain-Oriented Information Systems Design
The blockchain technology is regarded as the most promising technology that has the potential to trigger a technological revolution. However, besides the bitcoin industry, we have not yet seen a large-scale application of blockchain in those domains that are supposed to be impacted, such as supply chain, financial network, and intelligent manufacturing. The reasons not only lie in the difficulties of blockchain implementation, but are also root in the challenges of blockchain-oriented information systems design. As the blockchain members are self-interest actors that belong to organizations with different existing information systems. As they expect different information inputs and outputs of the blockchain application, a common language protocol is needed to facilitate communications between blockchain members. Second, considering the decentralization of blockchain organization, there is not any central authority to organize and coordinate the business processes. Thus, the information systems built on blockchain should support more adaptive business process. This paper aims to address these difficulties by providing a modeling approach for blockchain-oriented information systems design. We will investigate the information structure of distributed-ledger data with conceptual modeling techniques and ontology theories, and build an effective ontology mapping method for the inter-organization information flow and blockchain information records. Further, we will study the distributed-ledger-ontology based business process modeling to support adaptive enterprise on blockchain.
A Modeling Approach for Blockchain-Oriented Information Systems Design
The blockchain technology is regarded as the most promising technology that has the potential to trigger a technological revolution. However, besides the bitcoin industry, we have not yet seen a large-scale application of blockchain in those domains that are supposed to be impacted, such as supply chain, financial network, and intelligent manufacturing. The reasons not only lie in the difficulties of blockchain implementation, but are also root in the challenges of blockchain-oriented information systems design. As the blockchain members are self-interest actors that belong to organizations with different existing information systems. As they expect different information inputs and outputs of the blockchain application, a common language protocol is needed to facilitate communications between blockchain members. Second, considering the decentralization of blockchain organization, there is not any central authority to organize and coordinate the business processes. Thus, the information systems built on blockchain should support more adaptive business process. This paper aims to address these difficulties by providing a modeling approach for blockchain-oriented information systems design. We will investigate the information structure of distributed-ledger data with conceptual modeling techniques and ontology theories, and build an effective ontology mapping method for the inter-organization information flow and blockchain information records. Further, we will study the distributed-ledger-ontology based business process modeling to support adaptive enterprise on blockchain.
A Novel Probablistic Strategy for Modeling Photovoltaic Based Distributed Generators
This paper presents a novel algorithm for modeling photovoltaic based distributed generators for the purpose of optimal planning of distribution networks. The proposed algorithm utilizes sequential Monte Carlo method in order to accurately consider the stochastic nature of photovoltaic based distributed generators. The proposed algorithm is implemented in MATLAB environment and the results obtained are presented and discussed.
Coordinated Voltage Control in Radial Distribution System with Distributed Generators Using Sensitivity Analysis
Distributed generation has indeed become a major area of interest in recent years. Distributed generation can address a large number of loads in a power line and hence has better efficiency over the conventional methods. However, there are certain drawbacks associated with it, an increase in voltage being the major one. This paper addresses the voltage control at the buses for an IEEE 30 bus system by regulating reactive power. For carrying out the analysis, the suitable location for placing distributed generators (DG) is identified through load flow analysis and seeing where the voltage profile is dipping. MATLAB programming is used to regulate the voltage at all buses within +/- 5% of the base value even after the introduction of DGs. Three methods for regulation of voltage are discussed. A sensitivity based analysis is then carried out to determine the priority among the various methods listed in the paper.
Optimization of Line Loss Minimization Using Distributed Generation
Research conducted in the last few decades has proven that an inclusion of Distributed Genaration (DG) into distribution systems considerably lowers the level of power losses and the power quality improved. Moreover, the choice of DG is even more attractive since it provides not only benefits in power loss minimisation, but also a wide range of other advantages including environment, economic, power qualities and technical issues. This paper is an intent to quantify and analyse the impact of distributed generation (DG) in Tamil Nadu, India to examine what the benefits of decentralized generation would be for meeting rural loads. We used load flow analysis to simulate and quantify the loss reduction and power quality enhancement by having decentralized generation available line conditions for actual rural feeders in Tamil Nadu, India. Reactive and voltage profile was considered. This helps utilities to better plan their system in rural areas to meet dispersed loads, while optimizing the renewable and decentralised generation sources.
Big Data Analysis with Rhipe
Rhipe that integrates R and Hadoop environment made it possible to process and analyze massive amounts of data using a distributed processing environment. In this paper, we implemented multiple regression analysis using Rhipe with various data sizes of actual data. Experimental results for comparing the performance of our Rhipe with stats and biglm packages available on bigmemory, showed that our Rhipe was more fast than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases. We also compared the computing speeds of pseudo-distributed and fully-distributed modes for configuring Hadoop cluster. The results showed that fully-distributed mode was faster than pseudo-distributed mode, and computing speeds of fully-distributed mode were faster as the number of data nodes increases.
Integration of UPQC Based on Fuzzy Controller for Power Quality Enhancement in Distributed Network
The use of Distributed Generation (DG) has been increasing in recent years to fill the gap between energy supply and demand. This paper presents the grid connected wind energy system with UPQC based on fuzzy controller to compensate for voltage and current disturbances. The proposed system can improve power quality at the point of installation on power distribution systems. Simulation results show the capability of the DG-UPQC intelligent system to compensate sags voltage and current harmonics at the Point of Common Coupling (PCC).
Performance Analysis of Vertical Cavity Surface Emitting Laser and Distributed Feedback Laser for Community Access Television
CATV transmission systems have altered from old cable based one-way analog video transmission to two ways hybrid fiber transmission. The use of optical fiber reduces the RF amplifiers in the transmission, high transmission power or lower fiber transmission losses are required to increase system capability. This paper evaluates and compares Distributed Feedback (DFB) laser and Vertical Cavity Surface Emitting Laser (VCSEL) for CATV transmission. The simulation results exhibit the better performer among both lasers taking into consideration the parameters chosen for evaluation.
Coordinated Voltage Control in a Radial Distribution System
Distributed generation has indeed become a major area of interest in recent years. Distributed Generation can address large number of loads in a power line and hence has better efficiency over the conventional methods. However there are certain drawbacks associated with it, increase in voltage being the major one. This paper addresses the voltage control at the buses for an IEEE 30 bus system by regulating reactive power. For carrying out the analysis, the suitable location for placing distributed generators (DG) is identified through load flow analysis and seeing where the voltage profile is dipping. MATLAB programming is used to regulate the voltage at all buses within +/-5% of the base value even after the introduction of DG’s. Three methods for regulation of voltage are discussed. A sensitivity based analysis is later carried out to determine the priority among the various methods listed in the paper.
Determination of Frequency Relay Setting during Distributed Generators Islanding
Distributed generation (DG) has recently gained a lot of momentum in power industry due to market deregulation and environmental concerns. One of the most technical challenges facing DGs is islanding of distributed generators. The current industry practice is to disconnect all distributed generators immediately after the occurrence of islands within 200 to 350 ms after loss of main supply. To achieve such goal, each DG must be equipped with an islanding detection device. Frequency relays are one of the most commonly used loss of mains detection method. However, distribution utilities may be faced with concerns related to false operation of these frequency relays due to improper settings. The commercially available frequency relays are considering standard tight setting. This paper investigates some factors related to relays internal algorithm that contribute to their different operating responses. Further, the relay operation in the presence of multiple distributed at the same network is analyzed. Finally, the relay setting can be accurately determined based on these investigation and analysis.
A New Method for Fault Detection
Consider a distributed system that delivers messages from a process to another. Such a system is often required to deliver each message to its destination regardless of whether or not the system components experience arbitrary forms of faults. In addition, each message received by the destination must be a message sent by a system process. In this paper, we first identify the necessary and sufficient conditions to detect some restricted form of Byzantine faults referred to as modifying Byzantine faults. An observable form of a Byzantine fault whose effect is limited to the modification of a message metadata or content, timing and omission faults, and message replay is referred to as a modifying Byzantine fault. We then present a distributed protocol to detect modifying Byzantine faults using optimal number of messages over node-disjoint paths.
Modifying Byzantine Fault Detection Using Disjoint Paths
Consider a distributed system that delivers messages from a process to another. Such a system is often required to deliver each message to its destination regardless of whether or not the system components experience arbitrary forms of faults. In addition, each message received by the destination must be a message sent by a system process. In this paper, we first identify the necessary and sufficient conditions to detect some restricted form of Byzantine faults referred to as modifying Byzantine faults. An observable form of a Byzantine fault whose effect is limited to the modification of a message metadata or content, timing and omission faults, and message replay is referred to as a modifying Byzantine fault. We then present a distributed protocol to detect modifying Byzantine faults using optimal number of messages over node-disjoint paths.
Selection of Relevant Servers in Distributed Information Retrieval System
Nowadays, the dissemination of information touches the distributed world, where selecting the relevant servers to a user request is an important problem in distributed information retrieval. During the last decade, several research studies on this issue have been launched to find optimal solutions and many approaches of collection selection have been proposed. In this paper, we propose a new collection selection approach that takes into consideration the number of documents in a collection that contains terms of the query and the weights of those terms in these documents. We tested our method and our studies show that this technique can compete with other state-of-the-art algorithms that we choose to test the performance of our approach.
The Effective Use of the Network in the Distributed Storage
This work aims at studying the exploitation of high-speed networks of clusters for distributed storage. Parallel applications running on clusters require both high-performance communications between nodes and efficient access to the storage system. Many studies on network technologies led to the design of dedicated architectures for clusters with very fast communications between computing nodes. Efficient distributed storage in clusters has been essentially developed by adding parallelization mechanisms so that the server(s) may sustain an increased workload. In this work, we propose to improve the performance of distributed storage systems in clusters by efficiently using the underlying high-performance network to access distant storage systems. The main question we are addressing is: do high-speed networks of clusters fit the requirements of a transparent, efficient and high-performance access to remote storage? We show that storage requirements are very different from those of parallel computation. High-speed networks of clusters were designed to optimize communications between different nodes of a parallel application. We study their utilization in a very different context, storage in clusters, where client-server models are generally used to access remote storage (for instance NFS, PVFS or LUSTRE). Our experimental study based on the usage of the GM programming interface of MYRINET high-speed networks for distributed storage raised several interesting problems. Firstly, the specific memory utilization in the storage access system layers does not easily fit the traditional memory model of high-speed networks. Secondly, client-server models that are used for distributed storage have specific requirements on message control and event processing, which are not handled by existing interfaces. We propose different solutions to solve communication control problems at the filesystem level. We show that a modification of the network programming interface is required. Data transfer issues need an adaptation of the operating system. We detail several propositions for network programming interfaces which make their utilization easier in the context of distributed storage. The integration of a flexible processing of data transfer in the new programming interface MYRINET/MX is finally presented. Performance evaluations show that its usage in the context of both storage and other types of applications is easy and efficient.
Optimizing Availability of Marine Knowledge Repository with Cloud-Based Framework
Reliability is an important property for knowledge repository system. National Marine Bioinformatics System or NABTICS is a marine knowledge repository portal aimed to provide a baseline for marine biodiversity and a tool for researchers and developers. It is intended to be a large and growing online database and also a metadata system for inputs of research analysis. The trends of present large distributed systems such as Cloud computing are the delivery of computing as a service rather than a product. The goal of this research is to make NABTICS a system of greater availability by integrating it with Cloud based Neighbor Replication and Failure Recovery (NRFR). This can be achieved by implementation of NABTICS into distributed environment. As a result, the user can experience minimum downtime while using the system should the server is having a failure. Consequently the online database application is said to be highly available.
Cloud-Based Dynamic Routing with Feedback in Formal Methods
With the rapid growth of Cloud Computing, Formal Methods became a good choice for the refinement of message specification and verification for Dynamic Routing in Cloud Computing. Cloud-based Dynamic Routing is becoming increasingly popular. We propose feedback in Formal Methods for Dynamic Routing and Cloud Computing; the model and topologies show how to send messages from index zero to all others formally. The responsibility of proper verification becomes crucial with Dynamic Routing in the cloud. Formal Methods can play an essential role in the routing and development of Networks, and the testing of distributed systems. Event-B is a formal technique that consists of describing the problem rigorously and introduces solutions or details in the refinement steps. Event-B is a variant of B, designed for developing distributed systems and message passing of the dynamic routing. In Event-B and formal methods, the events consist of guarded actions occurring spontaneously rather than being invoked.
A Hybrid Distributed Algorithm for Solving Job Shop Scheduling Problem
In this paper, a distributed hybrid algorithm is proposed for solving the job shop scheduling problem. The suggested method executes different artificial neural networks, heuristics and meta-heuristics simultaneously on more than one machine. The neural networks are used to control the constraints of the problem while the meta-heuristics search the global space and the heuristics are used to prevent the premature convergence. To attain an efficient distributed intelligent method for solving big and distributed job shop scheduling problems, Apache Spark and Hadoop frameworks are used. In the algorithm implementation and design steps, new approaches are applied. Comparison between the proposed algorithm and other efficient algorithms from the literature shows its efficiency, which is able to solve large size problems in short time.
A New Distributed Computing Environment Based On Mobile Agents for Massively Parallel Applications
In this paper, we propose a new distributed environment for High Performance Computing (HPC) based on mobile agents. It allows us to perform parallel programs execution as distributed one over a flexible grid constituted by a cooperative mobile agent team works. The distributed program to be performed is encapsulated on team leader agent which deploys its team workers as Agent Virtual Processing Unit (AVPU). Each AVPU is asked to perform its assigned tasks and provides the computational results which make the data and team works tasks management difficult for the team leader agent and that influence the performance computing. In this work we focused on the implementation of the Mobile Provider Agent (MPA) in order to manage the distribution of data and instructions and to ensure a load balancing model. It grants also some interesting mechanisms to manage the others computing challenges thanks to the mobile agents several skills.
Distributed Coordination of Connected and Automated Vehicles at Multiple Interconnected Intersections
In connected vehicle systems where wireless communication is available among the involved vehicles and intersection controllers, it is possible to design an intersection coordination strategy that leads the connected and automated vehicles (CAVs) travel through the road intersections without the conventional traffic light control. In this paper, we present a distributed coordination strategy for the CAVs at multiple interconnected intersections that aims at improving system fuel efficiency and system mobility. We present a distributed control solution where in the higher level, the intersection controllers calculate the road desired average velocity and optimally assign reference velocities of each vehicle. In the lower level, every vehicle is considered to use model predictive control (MPC) to track their reference velocity obtained from the higher level controller. The proposed method has been implemented on a simulation-based case with two-interconnected intersection network. Additionally, the effects of mixed vehicle types on the coordination strategy has been explored. Simulation results indicate the improvement on vehicle fuel efficiency and traffic mobility of the proposed method.
Evaluation of Parameters of Subject Models and Their Mutual Effects
It is known that statistical information on operation of the compound multisite system is often far from the description of actual state of the system and does not allow drawing any conclusions about the correctness of its operation. For example, from the world practice of operation of systems of water supply, water disposal, it is known that total measurements at consumers and at suppliers differ between 40-60%. It is connected with mathematical measure of inaccuracy as well as ineffective running of corresponding systems. Analysis of widely-distributed systems is more difficult, in which subjects, which are self-maintained in decision-making, carry out economic interaction in production, act of purchase and sale, resale and consumption. This work analyzed mathematical models of sellers, consumers, arbitragers and the models of their interaction in the provision of dispersed single-product market of perfect competition. On the basis of these models, the methods, allowing estimation of every subject’s operating options and systems as a whole are given.
DG Allocation to Reduce Production Cost by Reducing Losses in Radial Distribution Systems Using Fuzzy
Electrical energy is vital in every aspect of day-to-day life. Keen interest is taken on all possible sources of energy from which it can be generated and this led to the encouragement of generating electrical power using renewable energy resources such as solar, tidal waves and wind energy. Due to the increasing interest on renewable sources in recent times, the studies on integration of distributed generation to the power grid have rapidly increased. Distributed Generation (DG) is a promising solution to many power system problems such as voltage regulation, power loss and reduction in operational cost, etc. To reduce production cost, it is important to minimize the losses by determining the location and size of local generators to be placed in the radial distribution systems. In this paper, reduction of production cost by optimal size of DG unit operated at optimal power factor is dealt. The optimal size of the DG unit is calculated analytically using approximate reasoning suitable nodes and DG placement to minimize production cost with minimum loss is determined by fuzzy technique. Total Cost of Power generation is compared with and without DG unit for 1 year duration. The suggested method is programmed under MATLAB software and is tested on IEEE 33 bus system and the results are presented.
Analytical Technique for Definition of Internal Forces in Links of Robotic Systems and Mechanisms with Statically Indeterminate and Determinate Structures Taking into Account the Distributed Dynamical Loads and Concentrated Forces
The distributed inertia forces of complex nature appear in links of rod mechanisms within the motion process. Such loads raise a number of problems, as the problems of destruction caused by a large force of inertia; elastic deformation of the mechanism can be considerable, that can bring the mechanism out of action. In this work, a new analytical approach for the definition of internal forces in links of robotic systems and mechanisms with statically indeterminate and determinate structures taking into account the distributed inertial and concentrated forces is proposed. The relations between the intensity of distributed inertia forces and link weight with geometrical, physical and kinematic characteristics are determined in this work. The distribution laws of inertia forces and dead weight make it possible at each position of links to deduce the laws of distribution of internal forces along the axis of the link, in which loads are found at any point of the link. The approximation matrixes of forces of an element under the action of distributed inertia loads with the trapezoidal intensity are defined. The obtained approximation matrixes establish the dependence between the force vector in any cross-section of the element and the force vector in calculated cross-sections, as well as allow defining the physical characteristics of the element, i.e., compliance matrix of discrete elements. Hence, the compliance matrixes of an element under the action of distributed inertial loads of trapezoidal shape along the axis of the element are determined. The internal loads of each continual link are unambiguously determined by a set of internal loads in its separate cross-sections and by the approximation matrixes. Therefore, the task is reduced to the calculation of internal forces in a final number of cross-sections of elements. Consequently, it leads to a discrete model of elastic calculation of links of rod mechanisms. The discrete model of the elements of mechanisms and robotic systems and their discrete model as a whole are constructed. The dynamic equilibrium equations for the discrete model of the elements are also received in this work as well as the equilibrium equations of the pin and rigid joints expressed through required parameters of internal forces. Obtained systems of dynamic equilibrium equations are sufficient for the definition of internal forces in links of mechanisms, which structure is statically definable. For determination of internal forces of statically indeterminate mechanisms (in the way of determination of internal forces), it is necessary to build a compliance matrix for the entire discrete model of the rod mechanism, that is reached in this work. As a result by means of developed technique the programs in the MAPLE18 system are made and animations of the motion of the fourth class mechanisms of statically determinate and statically indeterminate structures with construction on links the intensity of cross and axial distributed inertial loads, the bending moments, cross and axial forces, depending on kinematic characteristics of links are obtained.
Application of the Discrete Rationalized Haar Transform to Distributed Parameter System
In this paper the rationalized Haar transform is applied for distributed parameter system identification and estimation. A distributed parameter system is a dynamical and mathematical model described by a partial differential equation. And system identification concerns the problem of determining mathematical models from observed data. The Haar function has some disadvantages of calculation because it contains irrational numbers, for these reasons the rationalized Haar function that has only rational numbers. The algorithm adopted in this paper is based on the transform and operational matrix of the rationalized Haar function. This approach provides more convenient and efficient computational results.
Modeling of Micro-Grid System Components Using MATLAB/Simulink
Micro-grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. Renewable power sources such as wind, solar and hydro offer high potential of benign power for future micro-grid systems. Micro-Grid (MG) is basically a low voltage (LV) or medium voltage (MV) distribution network which consists of a number of called distributed generators (DG’s); micro-sources such as photovoltaic array, fuel cell, wind turbine etc. energy storage systems and loads; operating as a single controllable system, that could be operated in both grid-connected and islanded mode. The capacity of the DG’s is sufficient to support all; or most, of the load connected to the micro-grid. This paper presents a micro-grid system based on wind and solar power sources and addresses issues related to operation, control, and stability of the system. Using Matlab/Simulink, the system is modeled and simulated to identify the relevant technical issues involved in the operation of a micro-grid system based on renewable power generation units.
Optimal Planning of Dispatchable Distributed Generators for Power Loss Reduction in Unbalanced Distribution Networks
This paper proposes a novel heuristic algorithm that aims to determine the best size and location of distributed generators in unbalanced distribution networks. The proposed heuristic algorithm can deal with the planning cases where power loss is to be optimized without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power factor node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37 -node feeder. The results obtained show the effectiveness of the proposed algorithm.
Technical and Economic Environment in the Polish Power System as the Basis for Distributed Generation and Renewable Energy Sources Development
The article raises the issue of the development of local renewable energy sources and the production of distributed energy in context of improving the reliability of the Polish Power System and the beneficial impact on local and national energy security. The paper refers to the current problems of local governments in the process of investment in the area of distributed energy projects, and discusses the issues of the future role and cooperation within the local power plants and distributed energy. Attention is paid to the local communities the chance to raise their own resources and management of energy fuels (biomass, wind, gas mining) and improving the local energy balance. The material presented takes the issue of the development of the energy potential of municipalities and future cooperation with professional energy. As an example, practical solutions used in one of the communes in Silesia.
Discrete-Event Modeling and Simulation Methodologies: Past, Present and Future
Modeling and Simulation methods have been used to better analyze the behavior of complex physical systems, and it is now common to use simulation as a part of the scientific and technological discovery process. M&S advanced thanks to the improvements in computer technology, which, in many cases, resulted in the development of simulation software using ad-hoc techniques. Formal M&S appeared in order to try to improve the development task of very complex simulation systems. Some of these techniques proved to be successful in providing a sound base for the development of discrete-event simulation models, improving the ease of model definition and enhancing the application development tasks; reducing costs and favoring reuse. The DEVS formalism is one of these techniques, which proved to be successful in providing means for modeling while reducing development complexity and costs. DEVS model development is based on a sound theoretical framework. The independence of M&S tasks made possible to run DEVS models on different environments (personal computers, parallel computers, real-time equipment, and distributed simulators) and middleware. We will present a historical perspective of discrete-event M&S methodologies, showing different modeling techniques. We will introduce DEVS origins and general ideas, and compare it with some of these techniques. We will then show the current status of DEVS M&S, and we will discuss a technological perspective to solve current M&S problems (including real-time simulation, interoperability, and model-centered development techniques). We will show some examples of the current use of DEVS, including applications in different fields. We will finally show current open topics in the area, which include advanced methods for centralized, parallel or distributed simulation, the need for real-time modeling techniques, and our view in these fields.
The Impacts of Local Decision Making on Customisation Process Speed across Distributed Boundaries
Communicating and managing customers’ requirements in software development projects play a vital role in the software development process. While it is difficult to do so locally, it is even more difficult to communicate these requirements over distributed boundaries and to convey them to multiple distribution customers. This paper discusses the communication of multiple distribution customers’ requirements in the context of customised software products. The main purpose is to understand the challenges of communicating and managing customisation requirements across distributed boundaries. We propose a model for Communicating Customisation Requirements of Multi-Clients in a Distributed Domain (CCRD). Thereafter, we evaluate that model by presenting the findings of a case study conducted with a company with customisation projects for 18 distributed customers. Then, we compare the outputs of the real case process and the outputs of the CCRD model using simulation methods. Our conjecture is that the CCRD model can reduce the challenge of communication requirements over distributed organisational boundaries, and the delay in decision making and in the entire customisation process time.
Improving Fault Tolerance and Load Balancing in Heterogeneous Grid Computing Using Fractal Transform
The popularity of the Internet and the availability of powerful computers and high-speed networks as low-cost commodity components are changing the way we use computers today. These technical opportunities have led to the possibility of using geographically distributed and multi-owner resources to solve large-scale problems in science, engineering, and commerce. Recent research on these topics has led to the emergence of a new paradigm known as Grid computing. To achieve the promising potentials of tremendous distributed resources, effective and efficient load balancing algorithms are fundamentally important. Unfortunately, load balancing algorithms in traditional parallel and distributed systems, which usually run on homogeneous and dedicated resources, cannot work well in the new circumstances. In this paper, the concept of a fast fractal transform in heterogeneous grid computing based on R-tree and the domain-range entropy is proposed to improve fault tolerance and load balancing algorithm by improve connectivity, communication delay, network bandwidth, resource availability, and resource unpredictability. A novel two-dimension figure of merit is suggested to describe the network effects on load balance and fault tolerance estimation. Fault tolerance is enhanced by adaptively decrease replication time and message cost while load balance is enhanced by adaptively decrease mean job response time. Experimental results show that the proposed method yields superior performance over other methods.
The Impact of Distributed Epistemologies on Software Engineering
Many hackers worldwide would agree that, had it not been for linear-time theory, the refinement of Byzantine fault tolerance might never have occurred. After years of significant research into extreme programming, we validate the refinement of simulated annealing. Maw, our new framework for unstable theory, is the solution to all of these issues.
A New Realization of Multidimensional System for Grid Sensor Network
In this paper, for the basic problem of wireless sensor network topology control and deployment, the Roesser model in rectangular grid sensor networks is presented. In addition, a general constructive realization procedure will be proposed. The procedure enables a distributed implementation of linear systems on a sensor network. A non-trivial example is illustrated.
Wind Power Mapping and NPV of Embedded Generation Systems in Nigeria
The study assessed the potential and economic viability of stand-alone wind systems for embedded generation, taking into account its benefits to small off-grid rural communities at 40 meteorological sites in Nigeria. A specific electric load profile was developed to accommodate communities consisting of 200 homes, a school and a community health centre. This load profile was incorporated within the distributed generation analysis producing energy in the MW range, while optimally meeting daily load demand for the rural communities. Twenty-four years (1987 to 2010) of wind speed data at a height of 10m utilized for the study were sourced from the Nigeria Meteorological Department, Oshodi. The HOMER® software optimizing tool was engaged for the feasibility study and design. Each site was suited to 3MW wind turbines in sets of five, thus 15MW was designed for each site. This design configuration was adopted in order to easily compare the distributed generation system amongst the sites to determine their relative economic viability in terms of life cycle cost, as well as levelised cost of producing energy. A net present value was estimated in terms of life cycle cost for 25 of the 40 meteorological sites. On the other hand, the remaining sites yielded a net present cost; meaning the installations at these locations were not economically viable when utilizing the present tariff regime for embedded generation in Nigeria.
DOS and DDOS Attacks
Denial of Service is for denial-of-service attack, a type of attack on a network that is designed to bring the network to its knees by flooding it with useless traffic. Denial of Service (DoS) attacks have become a major threat to current computer networks. Many recent DoS attacks were launched via a large number of distributed attacking hosts in the Internet. These attacks are called distributed denial of service (DDoS) attacks. To have a better understanding on DoS attacks, this article provides an overview on existing DoS and DDoS attacks and major defense technologies in the Internet.
A Proposed Model of E-Marketing Service-Oriented Architecture (E-MSOA)
There have been some challenges and problems which hinder the implementation of the e-marketing systems such as the high cost of information systems infrastructure and maintenance as well as their unavailability within the institution. Also, there is no system which supports all programming languages and different platforms. Another problem is the lack of integration between these systems on one hand and the operating systems and different web browsers on the other hand. No system for customer relationship management is established which recognizes their desires and puts them in consideration while performing e-marketing functions is available. Therefore, the service-oriented architecture emerged as one of the most important techniques and methodologies to build systems that integrate with various operating systems and different platforms and other technologies. This technology allows realizing the data exchange among different applications. The service-oriented architecture represents distributed computing concepts to demonstrate its success in achieving the requirements of systems through web services. It also reflects the appropriate design for the services to use different web services in supporting the requirements of business processes and software users. In a service-oriented environment, web services are deployed on the web in the form of independent services to be accessed without knowledge of the nature of the programs and systems with in. This Paper presents a proposal for a new model which contributes to the application of methods and means of e-marketing with the integration of marketing mix elements to improve marketing efficiency (E-MSOA). And apply it in the educational city of one of the Egyptian sector.
Considering the Reliability of Measurements Issue in Distributed Adaptive Estimation Algorithms
In this paper we consider the issue of reliability of measurements in distributed adaptive estimation problem. To this aim, we assume a sensor network with different observation noise variance among the sensors and propose new estimation method based on incremental distributed least mean-square (IDLMS) algorithm. The proposed method contains two phases: I) Estimation of each sensors observation noise variance, and II) Estimation of the desired parameter using the estimated observation variances. To deal with the reliability of measurements, in the second phase of the proposed algorithm, the step-size parameter is adjusted for each sensor according to its observation noise variance. As our simulation results show, the proposed algorithm considerably improves the performance of the IDLMS algorithm in the same condition.
Fault Tolerant (n, k)-Star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems
This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.
Fault Tolerant (n,k)-star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems
This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.
Impact of Series Reactive Compensation on Increasing a Distribution Network Distributed Generation Hosting Capacity
The distributed generation hosting capacity of a distribution network is typically limited at a given connection point by the upper voltage limit that can be violated due to the injection of active power into the distribution network. The upper voltage limit violation concern becomes more important as the network equivalent resistance increases with respect to its equivalent reactance. This paper investigates the impact of modifying the distribution network equivalent reactance at the point of connection such that the upper voltage limit is violated at a higher distributed generation penetration, than it would without the addition of series reactive compensation. The results show that series reactive compensation proves efficient in certain situations (based on the ratio of equivalent network reactance to equivalent network resistance at the point of connection). As opposed to the conventional case of capacitive compensation of a distribution network to reduce voltage drop, inductive compensation is seen to be more appropriate for alleviation of distributed-generation-induced voltage rise.
A Fast Parallel and Distributed Type-2 Fuzzy Algorithm Based on Cooperative Mobile Agents Model for High Performance Image Processing
The aim of this paper is to present a distributed implementation of the Type-2 Fuzzy algorithm in a parallel and distributed computing environment based on mobile agents. The proposed algorithm is assigned to be implemented on a SPMD (Single Program Multiple Data) architecture which is based on cooperative mobile agents as AVPE (Agent Virtual Processing Element) model in order to improve the processing resources needed for performing the big data image segmentation. In this work we focused on the application of this algorithm in order to process the big data MRI (Magnetic Resonance Images) image of size (n x m). It is encapsulated on the Mobile agent team leader in order to be split into (m x n) pixels one per AVPE. Each AVPE perform and exchange the segmentation results and maintain asynchronous communication with their team leader until the convergence of this algorithm. Some interesting experimental results are obtained in terms of accuracy and efficiency analysis of the proposed implementation, thanks to the mobile agents several interesting skills introduced in this distributed computational model.
Genetic Algorithm Based Node Fault Detection and Recovery in Distributed Sensor Networks
In Distributed Sensor Networks, the sensor nodes are prone to failure due to energy depletion and some other reasons. In this regard, fault tolerance of network is essential in distributed sensor environment. Energy efficiency, network or topology control and fault-tolerance are the most important issues in the development of next-generation Distributed Sensor Networks (DSNs). This paper proposes a node fault detection and recovery using Genetic Algorithm (GA) in DSN when some of the sensor nodes are faulty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using GA, which is used to detect the faulty nodes in the network based on the energy depletion of node and link failure between nodes. The proposed fault detection model is used to detect faults at node level and network level faults (link failure and packet error). Finally, the performance parameters for the proposed scheme are evaluated.
Throughput of Point Coordination Function (PCF)
The IEEE 802.11 defines two modes of MAC, distributed coordination function (DCF) and point coordination function (PCF) mode. The first sub-layer of the MAC is the distributed coordination function (DCF). A contention algorithm is used via DCF to provide access to all traffic. The point coordination function (PCF) is the second sub-layer used to provide contention-free service. PCF is upper DCF and it uses features of DCF to establish guarantee access of its users. Some papers and researches that have been published in this technology were reviewed in this paper, as well as talking briefly about the distributed coordination function (DCF) technology. The simulation of the PCF function have been applied by using a simulation program called network simulator (NS2) and have been found out the throughput of a transmitter system by using this function.
Spatially Distributed Rainfall Prediction Based on Automated Kriging for Landslide Early Warning Systems
The precise prediction of rainfall in space and time is a key element to most landslide early warning systems. Unfortunately, the spatial variability of rainfall in many early warning applications is often disregarded. A common simplification is to use uniformly distributed rainfall to characterize aerial rainfall intensity. With spatially differentiated rainfall information, real-time comparison with rainfall thresholds or the implementation in process-based approaches might form the basis for improved landslide warnings. This study suggests an automated workflow from the hourly, web-based collection of rain gauge data to the generation of spatially differentiated rainfall predictions based on kriging. Because the application of kriging is usually a labor intensive task, a simplified and consequently automated variogram modeling procedure was applied to up-to-date rainfall data. The entire workflow was carried out purely with open source technology. Validation results, albeit promising, pointed out the challenges that are involved in pure distance based, automated geostatistical interpolation techniques for ever-changing environmental phenomena over short temporal and spatial extent.
Multi-Agent System Based Distributed Voltage Control in Distribution Systems
With the increasing Distributed Generation (DG) penetration, distribution systems are advancing towards the smart grid technology for least latency in tackling voltage control problem in a distributed manner. This paper proposes a Multi-agent based distributed voltage level control. In this method a flat architecture of agents is used and agents involved in the whole controlling procedure are On Load Tap Changer Agent (OLTCA), Static VAR Compensator Agent (SVCA), and the agents associated with DGs and loads at their locations. The objectives of the proposed voltage control model are to minimize network losses and DG curtailments while maintaining voltage value within statutory limits as close as possible to the nominal. The total loss cost is the sum of network losses cost, DG curtailment costs, and voltage damage cost (which is based on penalty function implementation). The total cost is iteratively calculated for various stricter limits by plotting voltage damage cost and losses cost against varying voltage limit band. The method provides the optimal limits closer to nominal value with minimum total loss cost. In order to achieve the objective of voltage control, the whole network is divided into multiple control regions; downstream from the controlling device. The OLTCA behaves as a supervisory agent and performs all the optimizations. At first, a token is generated by OLTCA on each time step and it transfers from node to node until the node with voltage violation is detected. Upon detection of such a node, the token grants permission to Load Agent (LA) for initiation of possible remedial actions. LA will contact the respective controlling devices dependent on the vicinity of the violated node. If the violated node does not lie in the vicinity of the controller or the controlling capabilities of all the downstream control devices are at their limits then OLTC is considered as a last resort. For a realistic study, simulations are performed for a typical Finnish residential medium-voltage distribution system using Matlab ®. These simulations are executed for two cases; simple Distributed Voltage Control (DVC) and DVC with optimized loss cost (DVC + Penalty Function). A sensitivity analysis is performed based on DG penetration. The results indicate that costs of losses and DG curtailments are directly proportional to the DG penetration, while in case 2 there is a significant reduction in total loss. For lower DG penetration, losses are reduced more or less 50%, while for higher DG penetration, loss reduction is not very significant. Another observation is that the newer stricter limits calculated by cost optimization moves towards the statutory limits of ±10% of the nominal with the increasing DG penetration as for 25, 45 and 65% limits calculated are ±5, ±6.25 and 8.75% respectively. Observed results conclude that the novel voltage control algorithm proposed in case 1 is able to deal with the voltage control problem instantly but with higher losses. In contrast, case 2 make sure to reduce the network losses through proposed iterative method of loss cost optimization by OLTCA, slowly with time.
Pareto System of Optimal Placement and Sizing of Distributed Generation in Radial Distribution Networks Using Particle Swarm Optimization
The Pareto approach of optimal solutions in a search space that evolved in multi-objective optimization problems is adopted in this paper, which stands for a set of solutions in the search space. This paper aims at presenting an optimal placement of Distributed Generation (DG) in radial distribution networks with an optimal size for minimization of power loss and voltage deviation as well as maximizing voltage profile of the networks. And these problems are formulated using particle swarm optimization (PSO) as a constraint nonlinear optimization problem with both locations and sizes of DG being continuous. The objective functions adopted are the total active power loss function and voltage deviation function. The multiple nature of the problem, made it necessary to form a multi-objective function in search of the solution that consists of both the DG location and size. The proposed PSO algorithm is used to determine optimal placement and size of DG in a distribution network. The output indicates that PSO algorithm technique shows an edge over other types of search methods due to its effectiveness and computational efficiency. The proposed method is tested on the standard IEEE 34-bus and validated with 33-bus test systems distribution networks. Results indicate that the sizing and location of DG are system dependent and should be optimally selected before installing the distributed generators in the system and also an improvement in the voltage profile and power loss reduction have been achieved.
Multi Agent Based Pre-Hospital Emergency Management Architecture
Managing pre-hospital emergency patients requires real-time practices and efficient resource utilization. Since we are facing a distributed Network of healthcare providers, services and applications choosing the right resources and treatment protocol considering patient situation is a critical task. Delivering care to emergency patients at right time and with the suitable treatment settings can save ones live and prevent further complication. In recent years Multi Agent Systems (MAS) introduced great solutions to deal with real-time, distributed and complicated problems. In this paper we propose a multi agent based pre-hospital emergency management architecture in order to manage coordination, collaboration, treatment protocol and healthcare provider selection between different parties in pre-hospital emergency in a self-organizing manner. We used AnyLogic Agent Based Modeling (ABM) tool in order to simulate our proposed architecture. We have analyzed and described the functionality of EMS center, Ambulance, Consultation Center, EHR Repository and Quality of Care Monitoring as main collaborating agents. Future work includes implementation of the proposed architecture and evaluation of its impact on patient quality of care improvement.
Concept, Modules and Objectives of the Syllabus Course: Small Power Plants and Renewable Energy Sources
This paper presents a curriculum of the subject small power plants and renewable energy sources, dealing with the concept of distributed generation, renewable energy sources, hydropower, wind farms, geothermal power plants, cogeneration plants, biogas plants of agriculture and animal origin, solar power and fuel cells. The course is taught the manner of connecting small power plants to the grid, the impact of small generators on the distribution system, as well as economic, environmental and legal aspects of operation of distributed generators.
Enhanced Disk-Based Databases towards Improved Hybrid in-Memory Systems
In-memory database systems are becoming popular due to the availability and affordability of sufficiently large RAM and processors in modern high-end servers with the capacity to manage large in-memory database transactions. While fast and reliable in-memory systems are still being developed to overcome cache misses, CPU/IO bottlenecks and distributed transaction costs, disk-based data stores still serve as the primary persistence. In addition, with the recent growth in multi-tenancy cloud applications and associated security concerns, many organisations consider the trade-offs and continue to require fast and reliable transaction processing of disk-based database systems as an available choice. For these organizations, the only way of increasing throughput is by improving the performance of disk-based concurrency control. This warrants a hybrid database system with the ability to selectively apply an enhanced disk-based data management within the context of in-memory systems that would help improve overall throughput. The general view is that in-memory systems substantially outperform disk-based systems. We question this assumption and examine how a modified variation of access invariance that we call enhanced memory access, (EMA) can be used to allow very high levels of concurrency in the pre-fetching of data in disk-based systems. We demonstrate how this prefetching in disk-based systems can yield close to in-memory performance, which paves the way for improved hybrid database systems. This paper proposes a novel EMA technique and presents a comparative study between disk-based EMA systems and in-memory systems running on hardware configurations of equivalent power in terms of the number of processors and their speeds. The results of the experiments conducted clearly substantiate that when used in conjunction with all concurrency control mechanisms, EMA can increase the throughput of disk-based systems to levels quite close to those achieved by in-memory system. The promising results of this work show that enhanced disk-based systems facilitate in improving hybrid data management within the broader context of in-memory systems.
HPPDFIM-HD: Transaction Distortion and Connected Perturbation Approach for Hierarchical Privacy Preserving Distributed Frequent Itemset Mining over Horizontally-Partitioned Dataset
Many algorithms have been proposed to provide privacy preserving in data mining. These protocols are based on two main approaches named as: the perturbation approach and the Cryptographic approach. The first one is based on perturbation of the valuable information while the second one uses cryptographic techniques. The perturbation approach is much more efficient with reduced accuracy while the cryptographic approach can provide solutions with perfect accuracy. However, the cryptographic approach is a much slower method and requires considerable computation and communication overhead. In this paper, a new scalable protocol is proposed which combines the advantages of the perturbation and distortion along with cryptographic approach to perform privacy preserving in distributed frequent itemset mining on horizontally distributed data. Both the privacy and performance characteristics of the proposed protocol are studied empirically.
Safe and Scalable Framework for Participation of Nodes in Smart Grid Networks in a P2P Exchange of Short-Term Products
Traditional utility value chain is being transformed during last few years into unbundled markets. Increased distributed generation of energy is one of considerable challenges faced by Smart Grid networks. New sources of energy introduce volatile demand response which has a considerable impact on traditional middlemen in E&U market. The purpose of this research is to search for ways to allow near-real-time electricity markets to transact with surplus energy based on accurate time synchronous measurements. A proposed framework evaluates the use of secure peer-2-peer (P2P) communication and distributed transaction ledgers to provide flat hierarchy, and allow real-time insights into present and forecasted grid operations, as well as state and health of the network. An objective is to achieve dynamic grid operations with more efficient resource usage, higher security of supply and longer grid infrastructure life cycle. Methods used for this study are based on comparative analysis of different distributed ledger technologies in terms of scalability, transaction performance, pluggability with external data sources, data transparency, privacy, end-to-end security and adaptability to various market topologies. An intended output of this research is a design of a framework for safer, more efficient and scalable Smart Grid network which is bridging a gap between traditional components of the energy network and individual energy producers. Results of this study are ready for detailed measurement testing, a likely follow-up in separate studies. New platforms for Smart Grid achieving measurable efficiencies will allow for development of new types of Grid KPI, multi-smart grid branches, markets, and businesses.
Energy System Analysis Using Data-Driven Modelling and Bayesian Methods
The dynamic performance of all energy generation technologies is impacted to varying degrees by the stochastic properties of the wider system within which the generation technology is located. This stochasticity can include the varying nature of ambient renewable energy resources such as wind or solar radiation, or unpredicted changes in energy demand which impact upon the operational behaviour of thermal generation technologies. An understanding of these stochastic impacts are especially important in contexts such as highly distributed (or embedded) generation, where an understanding of issues affecting the individual or aggregated performance of high numbers of relatively small generators is especially important, such as in ESCO projects. Probabilistic evaluation of monitored or simulated performance data is one technique which can provide an insight into the dynamic performance characteristics of generating systems, both in a prognostic sense (such as the prediction of future performance at the project’s design stage) as well as in a diagnostic sense (such as in the real-time analysis of underperforming systems). In this work, we describe the development, application and outcomes of a new approach to the acquisition of datasets suitable for use in the subsequent performance and impact analysis (including the use of Bayesian approaches) for a number of distributed generation technologies. The application of the approach is illustrated using a number of case studies involving domestic and small commercial scale photovoltaic, solar thermal and natural gas boiler installations, and the results as presented show that the methodology offers significant advantages in terms of plant efficiency prediction or diagnosis, along with allied environmental and social impacts such as greenhouse gas emission reduction or fuel affordability.
Formal Implementation of Routing Information Protocol Using Event-B
The goal of this paper is to explore the use of formal methods for Dynamic Routing, The purpose of network communication with dynamic routing is sending a massage from one node to others by using pacific protocols. In dynamic routing connections are possible based on protocols of Distance vector (Routing Information Protocol, Border Gateway protocol), Link State (Open Shortest Path First, Intermediate system Intermediate System), Hybrid (Enhanced Interior Gateway Routing Protocol). The responsibility for proper verification becomes crucial with Dynamic Routing. Formal methods can play an essential role in the Routing, development of Networks and testing of distributed systems. Event-B is a formal technique consists of describing rigorously the problem; introduce solutions or details in the refinement steps to obtain more concrete specification, and verifying that proposed solutions are correct. The system is modeled in terms of an abstract state space using variables with set theoretic types and the events that modify state variables. Event-B is a variant of B, was designed for developing distributed systems. In Event-B, the events consist of guarded actions occurring spontaneously rather than being invoked. The invariant state properties must be satisfied by the variables and maintained by the activation of the events.
Application of Analytical Method for Placement of DG Unit for Loss Reduction in Distribution Systems
The main aim of the paper is to implement a technique using distributed generation in distribution systems to reduce the distribution system losses and to improve voltage profiles. The fuzzy logic technique is used to select the proper location of DG and an analytical method is proposed to calculate the size of DG unit at any power factor. The optimal sizes of DG units are compared with optimal sizes obtained using the genetic algorithm. The suggested method is programmed under Matlab software and is tested on IEEE 33 bus system and the results are presented.
Researching Apache Hama: A Pure BSP Computing Framework
In recent years, the technological advancements have led to a deluge of data from distinctive domains and the need for development of solutions based on parallel and distributed computing has still long way to go. That is why, the research and development of massive computing frameworks is continuously growing. At this particular stage, highlighting a potential research area along with key insights could be an asset for researchers in the field. Therefore, this paper explores one of the emerging distributed computing frameworks, Apache Hama. It is a Top Level Project under the Apache Software Foundation, based on Bulk Synchronous Processing (BSP). We present an unbiased and critical interrogation session about Apache Hama and conclude research directions in order to assist interested researchers.
Research on Control Strategy of Differential Drive Assisted Steering of Distributed Drive Electric Vehicle
According to the independence, accuracy and controllability of the driving/braking torque of the distributed drive electric vehicle, a control strategy of differential drive assisted steering was designed. Firstly, the assisted curve under different speed and steering wheel torque was developed and the differential torques were distributed to the right and left front wheels. Then the steering return ability assisted control algorithm was designed. At last, the joint simulation was conducted by CarSim/Simulink. The result indicated: the differential drive assisted steering algorithm could provide enough steering drive-assisted under low speed and improve the steering portability. Along with the increase of the speed, the provided steering drive-assisted decreased. With the control algorithm, the steering stiffness of the steering system increased along with the increase of the speed, which ensures the driver’s road feeling. The control algorithm of differential drive assisted steering could avoid the understeer under low speed effectively.
Accelerating Side Channel Analysis with Distributed and Parallelized Processing
Although there is no theoretical weakness in a cryptographic algorithm, Side Channel Analysis can find out some secret data from the physical implementation of a cryptosystem. The analysis is based on extra information such as timing information, power consumption, electromagnetic leaks or even sound which can be exploited to break the system. Differential Power Analysis is one of the most popular analyses, as computing the statistical correlations of the secret keys and power consumptions. It is usually necessary to calculate huge data and takes a long time. It may take several weeks for some devices with countermeasures. We suggest and evaluate the methods to shorten the time to analyze cryptosystems. Our methods include distributed computing and parallelized processing.
Basics of SCADA Security: A Technical Approach
This paper presents a technical approach to analysis of security of SCADA systems. Main goal of the paper is to make SCADA administrators aware of risks resulting from SCADA systems usage and to familiarize with methods that can be adopt to existing or planned system, to increase overall system security level. Because SCADA based systems become a industrial standard, more attention should be paid to the security of that systems. Industrial Control Systems (ICS) like SCADA are responsible for controlling crucial aspects of wide range of industrial processes. In pair with that responsibility, goes a lot of money that can be earned or lost – this fact is main reason of increased interest of attackers. Additionally ICS are often responsible for maintaining resources strategic from the point of view of national economy, like electricity (including nuclear power plants), heating, water resources or military facilities, so they can be targets of terrorist cybernetic attacks. Without proper risk analysis and management, vulnerabilities resulting from the usage of SCADA can be easily exploited by potential attacker. Paper is based mostly on own experience in systems security, gathered during academic studies and professional work in international company. As title suggests, it will cover only basics of topic, because every of points mentioned in the document can be base for additional research and papers.
A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce
With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.
Stochastic Control of Decentralized Singularly Perturbed Systems
Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.
An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems
With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.
A Firefly Based Optimization Technique for Optimal Planning of Voltage Controlled Distributed Generators
This paper presents a method for finding the optimal location and capacity of dispatchable DGs connected to the distribution feeders for optimal planning for a specified power loss without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37-nodes feeder. The results that are validated by comparing it with results obtained from other competing methods show the effectiveness, accuracy and speed of the proposed method.
Decode and Forward Cooperative Protocol Enhancement Using Interference Cancellation
Cooperative communication systems are considered to be a promising technology to improve the system capacity, reliability and performances over fading wireless channels. Cooperative relaying system with a single antenna will be able to reach the advantages of multiple antenna communication systems. It is ideally suitable for the distributed communication systems; the relays can cooperate and form virtual MIMO systems. Thus the paper will aim to investigate the possible enhancement of cooperated system using decode and forward protocol. On decode and forward an attempt to cancel or at least reduce the interference instead of increasing the SNR values is achieved. The latter can be achieved via the use group of relays depending on the channel status from source to relay and relay to destination respectively. In the proposed system, the transmission time has been divided into two phases to be used by decode and forward protocol. The first phase has been allocated for the source to transmit its data whereas the relays and destination nodes are in receiving mode. On the other hand, the second phase is allocated for the first and second groups of relay nodes to relay the data to the destination node. Simulations results have shown an improvement in performance is achieved compared to the conventional decode and forward in terms of BER and transmission rate.
New Approach to Interactional Dynamics of E-mail Correspondence
The paper demonstrates a research about theoretical understanding of writing in the electronic environment as dynamic, interactive, dialogical, and distributed activity aimed at “other-orientation” and consensual domain creation. The purpose is to analyze the personal e-mail correspondence in the academic environment from this perspective. The focus is made on the dynamics of interaction between the correspondents such as contact setting, orientation and co-functions; and the text of an e-letter is regarded as indices of the write’s state or affordances in terms of ecological linguistics. The establishment of consensual domain of interaction brings about a new stage of cognition emergence which may lead to distributed learning. The research can play an important part in the series of works dedicated to writing in the electronic environment.
Towards a Distributed Computation Platform Tailored for Educational Process Discovery and Analysis
Given the ever changing needs of the job markets, education and training centers are increasingly held accountable for student success. Therefore, education and training centers have to focus on ways to streamline their offers and educational processes in order to achieve the highest level of quality in curriculum contents and managerial decisions. Educational process mining is an emerging field in the educational data mining (EDM) discipline, concerned with developing methods to discover, analyze and provide a visual representation of complete educational processes. In this paper, we present our distributed computation platform which allows different education centers and institutions to load their data and access to advanced data mining and process mining services. To achieve this, we present also a comparative study of the different clustering techniques developed in the context of process mining to partition efficiently educational traces. Our goal is to find the best strategy for distributing heavy analysis computations on many processing nodes of our platform.
A Golay Pair Based Synchronization Algorithm for Distributed Multiple-Input Multiple-Output System
In order to solve the problem of inaccurate synchronization for distributed multiple-input multiple-output (MIMO) system in multipath environment, a golay pair aided timing synchronization method is proposed in this paper. A new synchronous training sequence based on golay pair is designed. By utilizing the aperiodic auto-correlation complementary property of the new training sequence, the fine timing point is obtained at the receiver. Simulation results show that, compared with the tradition timing synchronization approaches, the proposed algorithm can provide high accuracy in synchronization, especially under multipath condition.
2 Stage CMOS Regulated Cascode Distributed Amplifier Design Based On Inductive Coupling Technique in Submicron CMOS Process
This paper proposes one stage and two stage CMOS Complementary Regulated Cascode Distributed Amplifier (CRCDA) design based on Inductive and Transformer coupling techniques. Usually, Distributed amplifier is based on inductor coupling between gate and gate of MOSFET and between drain and drain of MOSFET. But this paper propose some new idea, by coupling with differential primary windings of transformer between gate and gate of MOSFET first stage and second stage of regulated cascade amplifier and by coupling with differential secondary windings transformer of MOSFET between drain and drain of MOSFET first stage and second stage of regulated cascade amplifier. This paper also proposes polynomial modeling of Silicon Transformer passive equivalent circuit from Nanyang Technological University which is used to extract frequency response of transformer. Cadence simulation results are used to verify validity of transformer polynomial modeling which can be used to design distributed amplifier without Cadence. 4 parameters of scattering matrix of 2 port of the propose circuit is derived as a function of 4 parameters of impedance matrix.
Integrated Risk Management in The Supply Chain of Essential Medicines in Zambia
Access to health care is a human right, which includes having timely access to affordable and quality essential medicines at the right place and in sufficient quantity. However, inefficient public sector supply chain management contributes to constant shortages of essential medicines at health facilities. Literature review involved a desktop study of published research studies and reports on risk management, supply chain management of essential medicines and their integration to increase the efficiency of the latter. The research was conducted on a sample population of offices under Ministry of Health Headquarters, Lusaka Provincial and District Offices, selected health facilities in Lusaka, Medical Stores Limited, Zambia Medicines Regulatory Authority and Cooperating Partners. Individuals involved in study were selected judgmentally by their functions under selection and quantification, regulation, procurement, storage, distribution, quality assurance, and dispensing of essential medicines. Structured interviews and discussions were held with selected experts and self-administered questionnaires were distributed. Collected and analysed data of 35 returned and usable questionnaires from the 50 distributed. The highest prioritised risks were; inadequate and inconsistent fund disbursements, weak information management systems, weak quality management systems and insufficient resources (HR and infrastructure) among others. The results for this research can be used to increase the efficiency of the public sector supply chain of essential medicines and other pharmaceuticals. The results of the study showed that there is need to implement effective risk management systems by participating institutions and organisations to increase the efficiency of the entire supply chain in order to avoid and/or reduce shortages of essential medicines at health facilities.
Impact of Very Small Power Producers (VSPP) on Control and Protection System in Distribution Networks
Due to incentive policies to promote renewable energy and energy efficiency, high penetration levels of very small power producers (VSPP) located in distribution networks have imposed technical barriers and established new requirements for protection and control of the networks. Although VSPPs have economic and environmental benefit, they may introduce negative effects and cause several challenges on the issue of protection and control system. This paper presents comprehensive studies of possible impacts on control and protection systems based on real distribution systems located in a metropolitan area. A number of scenarios were examined primarily focusing on state of islanding, and un-disconnected VSPP during faults. It is shown that without proper measures to address the issues, the system would be unable to maintain its integrity of electricity power supply for disturbance incidents.
Optimal Allocation of Distributed Generation Sources for Loss Reduction and Voltage Profile Improvement by Using Particle Swarm Optimization
Nowadays distributed generation integration is best way to overcome the increasing load demand. Optimal allocation of distributed generation plays a vital role in reducing system losses and improves voltage profile. In this paper, a Meta heuristic technique is proposed for allocation of DG in order to reduce power losses and improve voltage profile. The proposed technique is based on Multi Objective Particle Swarm optimization. Fewer control parameters are needed in this algorithm. Modification is made in search space of PSO. The effectiveness of proposed technique is tested on IEEE 33 bus test system. Single DG as well as multiple DG scenario is adopted for proposed method. Proposed method is more effective as compared to other Meta heuristic techniques and gives better results regarding system losses and voltage profile.
Model-Based Automotive Partitioning and Mapping for Embedded Multicore Systems
This paper introduces novel approaches to partitioning and mapping in terms of model-based embedded multicore system engineering and further discusses benefits, industrial relevance and features in common with existing approaches. In order to assess and evaluate results, both approaches have been applied to a real industrial application as well as to various prototypical demonstrative applications, that have been developed and implemented for different purposes. Evaluations show, that such applications improve significantly according to performance, energy efficiency, meeting timing constraints and covering maintaining issues by using the AMALTHEA platform and the implemented approaches. Further- more, the model-based design provides an open, expandable, platform independent and scalable exchange format between OEMs, suppliers and developers on different levels. Our proposed mechanisms provide meaningful multicore system utilization since load balancing by means of partitioning and mapping is effectively performed with regard to the modeled systems including hardware, software, operating system, scheduling, constraints, configuration and more data.
Gendered Mobility: Deep Distributions in Urban Transport Systems in Delhi
Transportation as a sector is one of the most significant infrastructural elements of the ‘urban.' The distinctness of an urban life in a city is marked by the dynamic movements that it enables within the city-space. Therefore it is important to study the public-transport systems that enable and foster mobility which characterizes the urban. It is also crucial to underscore the way one is examining the urban transport systems - either as an infrastructural unit in a strict physical-structural sense or as a structural unit which acts as a prism refracting multiple experiences depending on the location of the ‘commuter.' In the proposed paper, the attempt is to uncover and investigate the assumption of the neuter-commuter by looking at urban transportation in the secondary sense i.e. as a structural unit which is experienced differently by different kinds of commuters, thus making transportation deeply distributed with various social structures and locations like class or gender which map onto the transport systems. To this end, the public-transit systems operating in Urban Delhi i.e. the Delhi Metros and the Delhi Transport Corporation run public-buses are looked at as case studies. The study is premised on the knowledge and data gained from both primary and secondary sources. Primary sources include data and knowledge collected from fieldwork, the methodology for which has ranged from adopting ‘mixed-methods’ which is ‘Qualitative-then-Quantitative’ as well as borrowing ethnographic techniques. Apart from fieldwork, other primary sources looked at including Annual Reports and policy documents of the Delhi Metro Rail Corporation (DMRC) and the Delhi Transport Corporation (DTC), Union and Delhi budgets, Economic Survey of Delhi, press releases, etc. Secondary sources include the vast array of literature available on the critical nodes that inform the research like gender, transport geographies, urban-space, etc. The study indicates a deeply-distributed urban transport system wherein the various social-structural locations or different kinds of commuters map onto the way these different commuters experience mobility or movement within the city space. Mobility or movement, therefore, becomes gendered or has class-based ramifications. The neuter-commuter assumption is thus challenged. Such an understanding enables us to challenge the anonymity which the ‘urban’ otherwise claims it provides over the rural. The rural is opposed to the urban wherein urban ushers a modern way of life, breaking ties of traditional social identities. A careful study of the transport systems through the traveling patterns and choices of the commuters, however, indicate that this does not hold true as even the same ‘public-space’ of the transport systems allocates different places to different kinds of commuters. The central argument made though the research done is therefore that infrastructure like urban-transport-systems has to be studied and examined as seen beyond just a physical structure. The various experiences of daily mobility of different kinds of commuters have to be taken into account in order to design and plan more inclusive transport systems.
Mobile Agent Security Using Reference Monitor Based Security Framework
In distributed systems and in open systems such as the Internet, often mobile code has to run on unknown and potentially hostile hosts. Mobile code such as a mobile agent is vulnerable when executing on remote hosts. The mobile agent may be subjected to various attacks such as tampering, inspection, and replay attack by a malicious host. Much research has been done to provide solutions for various security problems, such as authentication of mobile agent and hosts, integrity and confidentiality of the data carried by the mobile agent. Many of such proposed solutions in literature are not suitable for open systems whereby the mobile code arrives and executes on a host which is not known and trusted by the mobile agent owner. In this paper, we propose the adoption of the reference monitor by hosts in an open system for providing trust and security for mobile code execution. A secure protocol for the distribution of the reference monitor entity is described. This reference monitor entity on the remote host may also provide several security services such as authentication and integrity to the mobile code.
Vulnerable Paths Assessment for Distributed Denial of Service Attacks in a Cloud Computing Environment
In Cloud computing environment, cloud servers, sometimes may crash after receiving huge amount of request and cloud services may stop which can create huge loss to users of that cloud services. This situation is called Denial of Service (DoS) attack. In Distributed Denial of Service (DDoS) attack, an attacker targets multiple network paths by compromising various vulnerable systems (zombies) and floods the victim with huge amount of request through these zombies. There are many solutions to mitigate this challenge but most of the methods allows the attack traffic to arrive at Cloud Service Provider (CSP) and then only takes actions against mitigation. Here in this paper we are rather focusing on preventive mechanism to deal with these attacks. We analyze network topology and find most vulnerable paths beforehand without waiting for the traffic to arrive at CSP. We have used Dijkstra's and Yen’s algorithm. Finally, risk assessment of these paths can be done by multiplying the probabilities of attack for these paths with the potential loss.
A High-Level Co-Evolutionary Hybrid Algorithm for the Multi-Objective Job Shop Scheduling Problem
In this paper, a hybrid distributed algorithm has been suggested for the multi-objective job shop scheduling problem. Many new approaches are used at design steps of the distributed algorithm. Co-evolutionary structure of the algorithm and competition between different communicated hybrid algorithms, which are executed simultaneously, causes to efficient search. Using several machines for distributing the algorithms, at the iteration and solution levels, increases computational speed. The proposed algorithm is able to find the Pareto solutions of the big problems in shorter time than other algorithm in the literature. Apache Spark and Hadoop platforms have been used for the distribution of the algorithm. The suggested algorithm and implementations have been compared with results of the successful algorithms in the literature. Results prove the efficiency and high speed of the algorithm.
Application of Fuzzy Logic in Voltage Regulation of Radial Feeder with Distributed Generators
Distributed Generation is the need of the hour. With current advancements in the DG technology, there are some major issues that need to be tackled in order to make this method of generation of energy more efficient and feasible. Among other problems, the control in voltage is the major issue that needs to be addressed. This paper focuses on control of voltage using reactive power control of DGs with the help of fuzzy logic. The membership functions have been defined accordingly and the control of the system is achieved. Finally, with the help of simulation results in Matlab, the control of voltage within the tolerance limit set (+/- 5%) is achieved. The voltage waveform graphs for the IEEE 14 bus system are obtained by using simple algorithm with MATLAB and then with fuzzy logic for 14 bus system. The goal of this project was to control the voltage within limits by controlling the reactive power of the DG using fuzzy logic.
Power Quality Improvement Using UPQC Integrated with Distributed Generation Network
The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.
Point-of-Interest Recommender Systems for Location-Based Social Network Services
Location Based Social Network services (LBSNs) is a new term that combines location based service and social network service (SNS). Unlike traditional SNS, LBSNs emphasizes empirical elements in the user's actual physical location. Point-of-Interest (POI) is the most important factor to implement LBSNs recommendation system. POI information is the most popular spot in the area. In this study, we would like to recommend POI to users in a specific area through recommendation system using collaborative filtering. The process is as follows: first, we will use different data sets based on Seoul and New York to find interesting results on human behavior. Secondly, based on the location-based activity information obtained from the personalized LBSNs, we have devised a new rating that defines the user's preference for the area. Finally, we have developed an automated rating algorithm from massive raw data using distributed systems to reduce advertising costs of LBSNs.
Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm
In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.
Cloud Computing in Data Mining: A Technical Survey
Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Due to immense number of users seeking data on daily basis, there is a serious security concerns to cloud providers as well as data providers who put their data on the cloud computing environment. Big data analytics use compute intensive data mining algorithms (Hidden markov, MapReduce parallel programming, Mahot Project, Hadoop distributed file system, K-Means and KMediod, Apriori) that require efficient high performance processors to produce timely results. Data mining algorithms to solve or optimize the model parameters. The challenges that operation has to encounter is the successful transactions to be established with the existing virtual machine environment and the databases to be kept under the control. Several factors have led to the distributed data mining from normal or centralized mining. The approach is as a SaaS which uses multi-agent systems for implementing the different tasks of system. There are still some problems of data mining based on cloud computing, including design and selection of data mining algorithms.
Application of Semantic Technologies in Rapid Reconfiguration of Factory Systems
Digital factory based on visual design and simulation has emerged as a mainstream to reduce digital development life cycle. Some basic industrial systems are being integrated via semantic modelling, and products (P) matching process (P)-resource (R) requirements are designed to fulfill current customer demands. Nevertheless, product design is still limited to fixed product models and known knowledge of product engineers. Therefore, this paper presents a rapid reconfiguration method based on semantic technologies with PPR ontologies to reuse known and unknown knowledge. In order to avoid the influence of big data, our system uses a cloud manufactory and distributed database to improve the efficiency of querying meeting PPR requirements.
Comparative Assessment of a Distributed Model and a Lumped Model for Estimating of Sediments Yielding in Small Urban Areas
Increases in urbanization during XX century, have brought as one major problem the increased of sediment production. Hydraulic erosion is one of the major causes of increasing of sediments in small urban catchments. Such increments in sediment yielding in header urban catchments can caused obstruction of drainage systems, making impossible to capture urban runoff, increasing runoff volumes and thus exacerbating problems of urban flooding. For these reasons, it is more and more important to study of sediment production in urban watershed for properly analyze and solve problems associated to sediments. The study of sediments production has improved with the use of mathematical modeling. For that reason, it is proposed a new physically based model applicable to small header urban watersheds that includes the advantages of distributed physically base models, but with more realistic data requirements. Additionally, in this paper the model proposed is compared with a lumped model, reviewing the results, the advantages and disadvantages between the both of them.
A Hybrid Distributed Algorithm for Multi-Objective Dynamic Flexible Job Shop Scheduling Problem
In this paper, a hybrid distributed algorithm has been suggested for multi-objective dynamic flexible job shop scheduling problem. The proposed algorithm is high level, in which several algorithms search the space on different machines simultaneously also it is a hybrid algorithm that takes advantages of the artificial intelligence, evolutionary and optimization methods. Distribution is done at different levels and new approaches are used for design of the algorithm. Apache spark and Hadoop frameworks have been used for the distribution of the algorithm. The Pareto optimality approach is used for solving the multi-objective benchmarks. The suggested algorithm that is able to solve large-size problems in short times has been compared with the successful algorithms of the literature. The results prove high speed and efficiency of the algorithm.
Study of Transport Phenomena in Photonic Crystals with Correlated Disorder
Using the transfer-matrix technique and the Kronig Penney model, we numerically and analytically investigate the effect of short-range correlated disorder in random dimer model (RDM) on transmission properties of light in one dimension photonic crystals made of three different materials. Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that one kind of these layers appears in pairs. It is shown that the one-dimensional random dimer photonic crystals support two types of extended modes. By shifting of the dimer resonance toward the host fundamental stationary resonance state, we demonstrate the existence of the ballistic response in these systems.
Diffusion Adaptation Strategies for Distributed Estimation Based on the Family of Affine Projection Algorithms
This work presents the distributed processing solution problem in a diffusion network based on the adapt then combine (ATC) and combine then adapt (CTA)selective partial update normalized least mean squares (SPU-NLMS) algorithms. Also, we extend this approach to dynamic selection affine projection algorithm (DS-APA) and ATC-DS-APA and CTA-DS-APA are established. The purpose of ATC-SPU-NLMS and CTA-SPU-NLMS algorithm is to reduce the computational complexity by updating the selected blocks of weight coefficients at every iteration. In CTA-DS-APA and ATC-DS-APA, the number of the input vectors is selected dynamically. Diffusion cooperation strategies have been shown to provide good performance based on these algorithms. The good performance of introduced algorithm is illustrated with various experimental results.
Software Defined Storage: Object Storage over Hadoop Platform
The purpose of this project is to develop an open source object storage system that is highly durable, scalable and reliable. There are two representative systems in cloud computing: Google and Amazon. Their storage systems for Google GFS and Amazon S3 provide high reliability, performance and stability. Our proposed system is highly inspired from Amazon S3. We are using Hadoop Distributed File System (HDFS) Java API to implement our system. We propose the architecture of object storage system based on Hadoop. We discuss the requirements of our system, what we expect from our system and what problems we may encounter. We also give detailed design proposal along with the abstract source code to implement it. The final goal of the system is to provide REST based access to our object storage system that exists on top of HDFS.
Innovative Power Engineering in a Selected Rural Commune
This paper presents modern solutions of distributed generation in rural communities aiming at the improvement of energy and environmental security, as well as power supply reliability to important customers (e.g. health care, sensitive consumer required continuity). Distributed sources are mainly gas and biogas cogeneration units, as well as wind and photovoltaic sources. Some examples of their applications in a selected Silesian community are given.
Performance Evaluation and Cost Analysis of Standby Systems
Pumping systems are an integral part of water desalination plants, their effective functioning is vital for the operation of a plant. In this research work, the reliability and availability of pressurized pumps in a reverse osmosis desalination plant are studied with the objective of finding configurations that provides optimal performance. Six configurations of a series system with different number of warm and cold standby components were examined. Closed form expressions for the mean time to failure (MTTF) and the long run availability are derived and compared under the assumption that the time between failures and repair times of the primary and standby components are exponentially distributed. Moreover, a cost/ benefit analysis is conducted in order to identify a configuration with the best performance and least cost. It is concluded that configurations with cold standby components are preferable especially when the pumps are of the size.
Frequency Controller Design for Distributed Generation by Load Shedding: Multi-Agent Systems Approach
Frequency stability of microgrids under islanded operation attracts particular attention recently. A new cooperative frequency control strategy based on centralized multi-agent system (CMAS) is proposed in this study. On this strategy, agents sent data and furthermore each component has its own to center operating decisions (MGCC). After deciding on the information, they are returned. Frequency control strategies include primary and secondary frequency control and disposal of multi-stage load in which this study will also provide a method and algorithm for load shedding. This could also be a big problem for the performance of micro-grid in times of disaster. The simulation results show the promising performance of the proposed structure of the controller based on multi agent systems.
Utilization of Secure Wireless Networks as Environment for Learning and Teaching in Higher Education
This paper investigate the utilization of wire and wireless networks to be platform for distributed educational monitoring system. Universities in developing countries suffer from a lot of shortages(staff, equipment, and finical budget) and optimal utilization of the wire and wireless network, so universities can mitigate some of the mentioned problems and avoid the problems that maybe humble the education processes in many universities by using our implementation of the examinations system as a test-bed to utilize the network as a solution to the shortages for academic staff in Taiz University. This paper selects a two areas first one quizzes activities is only a test bed application for wireless network learning environment system to be distributed among students. Second area is the features and the security of wireless, our tested application implemented in a promising area which is the use of WLAN in higher education for leering environment.
Performance Comparison of Droop Control Methods for Parallel Inverters in Microgrid
Although the energy source in the world is mainly based on fossil fuels today, there is a need for alternative energy generation systems, which are more economic and environmentally friendly, due to continuously increasing demand of electric energy and lacking power resources and networks. Distributed Energy Resources (DERs) such as fuel cells, wind and solar power have recently become widespread as alternative generation. In order to solve several problems that might be encountered when integrating DERs to power system, the microgrid concept has been proposed. A microgrid can operate both grid connected and island mode to benefit both utility and customers. For most distributed energy resources (DER) which are connected in parallel in LV-grid like micro-turbines, wind plants, fuel cells and PV cells electrical power is generated as a direct current (DC) and converted to an alternative currents (AC) by inverters. So the inverters are assumed to be primary components in a microgrid. There are many control techniques of parallel inverters to manage active and reactive sharing of the loads. Some of them are based on droop method. In literature, the studies are usually focused on improving the transient performance of inverters. In this study, the performance of two different controllers based on droop control method is compared for the inverters operated in parallel without any communication feedback. For this aim, a microgrid in which inverters are controlled by conventional droop controller and modified droop controller is designed. Modified controller is obtained by adding PID into conventional droop control. Active and reactive power sharing performance, voltage and frequency responses of those control methods are measured in several operational cases. Study cases have been simulated by MATLAB-SIMULINK.
A New Method to Winner Determination for Economic Resource Allocation in Cloud Computing Systems
Cloud computing systems are large-scale distributed systems, so that they focus more on large scale resource sharing, cooperation of several organizations and their use in new applications. One of the main challenges in this realm is resource allocation. There are many different ways to resource allocation in cloud computing. One of the common methods to resource allocation are economic methods. Among these methods, the auction-based method has greater prominence compared with Fixed-Price method. The double combinatorial auction is one of the proper ways of resource allocation in cloud computing. This method includes two phases: winner determination and resource allocation. In this paper a new method has been presented to determine winner in double combinatorial auction-based resource allocation using Imperialist Competitive Algorithm (ICA). The experimental results show that in our new proposed the number of winner users is higher than genetic algorithm. On other hand, in proposed algorithm, the number of winner providers is higher in genetic algorithm.
Distributed Time-Varying Kalman Filter Design and Estimation over Wireless Sensor Networks Using Ordered Weighted Averaging Sensor Fusion Technique
In this paper, a novel estimation procedure is proposed which consists of designing a distributed class of time-varying Kalman filter based on wireless sensor networks topology along with a new sensor fusion method. The proposed technique is employed to estimate the states and outputs of a linear time-varying system with a high level of accuracy. Both the dynamics of the system and the measurements are assumed to be contaminated by external noises. The notion of Orness and Ordered Weighted Averaging (OWA) operator technique are utilized to fuse the estimation of the sensors. O’Hagan method along with the gradient descent method is employed to find the optimal weights. In the introduced approach, OWA weights are learned for each observation such that they efficiently minimize the estimation error for that particular observation. This will result in an outstanding high accurate sensor fusion outcome. In addition, two optimistic and pessimistic exponential OWA operators are used and compared together to achieve a pre-specified level of Orness. The simulation results are shown on a given linear time-varying system to verify the effectiveness of the proposed sensor fusion distributed filtering design method.
Intelligent Control of Doubly Fed Induction Generator Wind Turbine for Smart Grid
Due to the growing penetration of wind energy into the power grid, it is very important to study its interactions with the power system and to provide good control technique in order to deliver high quality power. In this paper, an intelligent control methodology is proposed for optimizing the controllers’ parameters of doubly fed induction generator (DFIG) based wind turbine generation system (WTGS). The genetic algorithm (GA) and particle swarm optimization (PSO) are employed and compared for the parameters adaptive tuning of the proposed proportional integral (PI) multiple controllers of the back to back converters of the DFIG based WTGS. For this purpose, the dynamic model of WTGS with DFIG and its associated controllers is presented. Furthermore, the simulation of the system is performed using MATLAB/SIMULINK and SIMPOWERSYSTEM toolbox to illustrate the performance of the optimized controllers. Finally, this work is validated to 33-bus test radial system to show the interaction between wind distributed generation (DG) systems and the distribution network.
Voltage and Current Control of Microgrid in Grid Connected and Islanded Modes
This paper presents the voltage and current control of microgrid accompanied by the synchronization of microgrid with the main utility grid in both islanded and grid-connected modes. Distributed Energy Resources (DERs) satisfy the wide-spread power demand of consumer by behaving as a micro source for a low voltage (LV) grid or microgrid. Synchronization of the microgrid with the main utility grid is done using PLL and PWM gate pulse generation technique is used for the Voltage Source Converter. Potential Function method achieves the voltage and current control of this microgrid in both islanded and grid-connected modes. A low voltage grid consisting of three distributed generators (DG) is considered for the study and is simulated in time-domain using PSCAD/EMTDC software. The simulation results depict the appropriateness of voltage and current control of microgrid and synchronization of microgrid with the medium voltage (MV) grid.
A Highly Efficient Broadcast Algorithm for Computer Networks
A wave is a distributed execution, often made up of a broadcast phase followed by a feedback phase, requiring the participation of all the system processes before a particular event called decision is taken. Wave algorithms with one initiator such as the 1-wave algorithm have been shown to be very efficient for broadcasting messages in tree networks. Extensions of this algorithm broadcasting a sequence of waves using a single initiator have been implemented in algorithms such as the m-wave algorithm. However as the network size increases, having a single initiator adversely affects the message delivery times to nodes further away from the initiator. As a remedy, broadcast waves can be allowed to be initiated by multiple initiator nodes distributed across the network to reduce the completion time of broadcasts. These waves initiated by one or more initiator processes form a collection of waves covering the entire network. Solutions to global-snapshots, distributed broadcast and various synchronization problems can be solved efficiently using waves with multiple concurrent initiators. In this paper, we propose the first stabilizing multi-wave sequence algorithm implementing waves started by multiple initiator processes such that every process in the network receives at least one sequence of broadcasts. Due to being stabilizing, the proposed algorithm can withstand transient faults and do not require initialization. We view a fault as a transient fault if it perturbs the configuration of the system but not its program.
Distributed Manufacturing (DM)- Smart Units and Collaborative Processes
Developments in ICT totally reshape manufacturing as machines, objects and equipment on the shop floors will be smart and online. Interactions with virtualizations and models of a manufacturing unit will appear exactly as interactions with the unit itself. These virtualizations may be driven by providers with novel ICT services on demand that might jeopardize even well established business models. Context aware equipment, autonomous orders, scalable machine capacity or networkable manufacturing unit will be the terminology to get familiar with in manufacturing and manufacturing management. Such newly appearing smart abilities with impact on network behavior, collaboration procedures and human resource development will make distributed manufacturing a preferred model to produce. Computing miniaturization and smart devices revolutionize manufacturing set ups, as virtualizations and atomization of resources unwrap novel manufacturing principles. Processes and resources obey novel specific laws and have strategic impact on manufacturing and major operational implications. Mechanisms from distributed manufacturing engaging interacting smart manufacturing units and decentralized planning and decision procedures already demonstrate important effects from this shift of focus towards collaboration and interoperability.
Scalable Cloud-Based LEO Satellite Constellation Simulator
Distributed applications deployed on LEO satellites and ground stations require substantial communication between different members in a constellation to overcome the earth coverage barriers imposed by GEOs. Applications running on LEO constellations suffer the earth line-of-sight blockage effect. They need adequate lab testing before launching to space. We propose a scalable cloud-based net-work simulation framework to simulate problems created by the earth line-of-sight blockage. The framework utilized cloud IaaS virtual machines to simulate LEO satellites and ground stations distributed software. A factorial ANOVA statistical analysis is conducted to measure simulator overhead on overall communication performance. The results showed a very low simulator communication overhead. Consequently, the simulation framework is proposed as a candidate for testing LEO constellations with distributed software in the lab before space launch.
A General Variable Neighborhood Search Algorithm to Minimize Makespan of the Distributed Permutation Flowshop Scheduling Problem
This paper addresses minimizing the makespan of the distributed permutation flow shop scheduling problem. In this problem, there are several parallel identical factories or flowshops each with series of similar machines. Each job should be allocated to one of the factories and all of the operations of the jobs should be performed in the allocated factory. This problem has recently gained attention and due to NP-Hard nature of the problem, metaheuristic algorithms have been proposed to tackle it. Majority of the proposed algorithms require large computational time which is the main drawback. In this study, a general variable neighborhood search algorithm (GVNS) is proposed where several time-saving schemes have been incorporated into it. Also, the GVNS uses the sophisticated method to change the shaking procedure or perturbation depending on the progress of the incumbent solution to prevent stagnation of the search. The performance of the proposed algorithm is compared to the state-of-the-art algorithms based on standard benchmark instances.
Review of European Grid Codes for Low Voltage Grid Interconnection of Inverter Based Distributed Generation
With the decreasing prices of photovoltaic (PV) panels, the number of PV installations on the low-voltage (LV) grid has increased significantly. This increasing capacity of the installed inverter-based distributed generation (DG) has an appreciable impact on grid operations. In order to integrate them into the power network, various grid codes modifications have been proposed in every country, and not all of them allow the utilization of the full potential of the DGs connected to the LV. Thus, there is a need to adapt the existing regulations in order to increase the hosting capacity and reliability of the grid. This paper presents a review of recent European grid codes concerning the integration of inverter based DGs into the LV network. A comparison of different grid codes is showcased on a low-voltage grid test model. The parameters considered are frequency and voltage regulation, active and reactive power support, as well as fault ride through capability. Static and dynamic behavior of the system during short circuits and other contingencies are studied with different grid codes. In addition, grid code modifications are proposed in order to improve reliability and capacity of the LV network.
Handshake Algorithm for Minimum Spanning Tree Construction
In this paper, we introduce and analyse a probabilistic distributed algorithm for a construction of a minimum spanning tree on network. This algorithm is based on the handshake concept. Firstly, each network node is considered as a sub-spanning tree. And at each round of the execution of our algorithm, a sub-spanning trees are merged. The execution continues until all sub-spanning trees are merged into one. We analyze this algorithm by a stochastic process.
A Boundary Backstepping Control Design for 2-D, 3-D and N-D Heat Equation
We consider the problem of stabilization of an unstable heat equation in a 2-D, 3-D and generally n-D domain by deriving a generalized backstepping boundary control design methodology. To stabilize the systems, we design boundary backstepping controllers inspired by the 1-D unstable heat equation stabilization procedure. We assume that one side of the boundary is hinged and the other side is controlled for each direction of the domain. Thus, controllers act on two boundaries for 2-D domain, three boundaries for 3-D domain and ”n” boundaries for n-D domain. The main idea of the design is to derive ”n” controllers for each of the dimensions by using ”n” kernel functions. Thus, we obtain ”n” controllers for the ”n” dimensional case. We use a transformation to change the system into an exponentially stable ”n” dimensional heat equation. The transformation used in this paper is a generalized Volterra/Fredholm type with ”n” kernel functions for n-D domain instead of the one kernel function of 1-D design.
An Agile, Intelligent and Scalable Framework for Global Software Development
Global Software Development (GSD) is becoming a common norm in software industry, despite of the fact that global distribution of the teams presents special issues for effective communication and coordination of the teams. Now trends are changing and project management for distributed teams is no longer in a limbo. GSD can be effectively established using agile and project managers can use different agile techniques/tools for solving the problems associated with distributed teams. Agile methodologies like scrum and XP have been successfully used with distributed teams. We have employed exploratory research method to analyze different recent studies related to challenges of GSD and their proposed solutions. In our study, we had deep insight in six commonly faced challenges: communication and coordination, temporal differences, cultural differences, knowledge sharing/group awareness, speed and communication tools. We have established that each of these challenges cannot be neglected for distributed teams of any kind. They are interlinked and as an aggregated whole can cause the failure of projects. In this paper we have focused on creating a scalable framework for detecting and overcoming these commonly faced challenges. In the proposed solution, our objective is to suggest agile techniques/tools relevant to a particular problem faced by the organizations related to the management of distributed teams. We focused mainly on scrum and XP techniques/tools because they are widely accepted and used in the industry. Our solution identifies the problem and suggests an appropriate technique/tool to help solve the problem based on globally shared knowledgebase. We can establish a cause and effect relationship using a fishbone diagram based on the inputs provided for issues commonly faced by organizations. Based on the identified cause, suitable tool is suggested, our framework suggests a suitable tool. Hence, a scalable, extensible, self-learning, intelligent framework proposed will help implement and assess GSD to achieve maximum out of it. Globally shared knowledgebase will help new organizations to easily adapt best practices set forth by the practicing organizations.
A Joint Possibilistic-Probabilistic Tool for Load Flow Uncertainty Assessment-Part II: Case Studies
Power systems are innately uncertain systems. To face with such uncertain systems, robust uncertainty assessment tools are appealed. This paper inspects the uncertainty assessment formulation of the load flow (LF) problem considering different kinds of uncertainties, developed in its companion paper through some case studies. The proposed methodology is based on the evidence theory and joint propagation of possibilistic and probabilistic uncertainties. The load and wind power generation are considered as probabilistic uncertain variables and the electric vehicles (EVs) and gas turbine distributed generation (DG) units are considered as possibilistic uncertain variables. The cumulative distribution function (CDF) of the system output parameters obtained by the pure probabilistic method lies within the belief and plausibility functions obtained by the joint propagation approach. Furthermore, the imprecision in the DG parameters is explicitly reflected by the gap between the belief and plausibility functions. This gap, due to the epistemic uncertainty on the DG resources parameters grows as the penetration level increases.
The Challenges of Scaling Agile to Large-Scale Distributed Development: An Overview of the Agile Factory Model
Many companies have moved to agile and hybrid agile methodologies where portions of the Software Design Life-cycle (SDLC) and Software Test Life-cycle (STLC) can be time boxed in order to enhance delivery speed, quality and to increase flexibility to changes in software requirements. Despite widespread proliferation of agile practices, implementation often fails due to lack of adequate project management support, decreased motivation or fear of increased interaction. Consequently, few organizations effectively adopt agile processes with tailoring often required to integrate agile methodology in large scale environments. This paper provides an overview of the challenges in implementing an innovative large-scale tailored realization of the agile methodology termed the Agile Factory Model (AFM), with the aim of comparing and contrasting issues of specific importance to organizations undertaking large scale agile development. The conclusions demonstrate that agile practices can be effectively translated to a globally distributed development environment.
Memory and Narratives Rereading before and after One Week
As people read through event-based narratives, they construct an event model that captures information about the characters, goals, location, time, and causality. For many reasons, memory for such narratives is represented at different levels, namely, the surface form, textbase, and event model levels. Rereading has been shown to decrease surface form memory, while, at the same time, increasing textbase and event model memories. More generally, distributed practice has consistently shown memory benefits over massed practice for different types of materials, including texts. However, little research has investigated distributed practice of narratives at different inter-study intervals and these effects on these three levels of memory. Recent work in our lab has indicated that there may be dramatic changes in patterns of forgetting around one week, which may affect the three levels of memory. The present experiment aimed to determine the effects of rereading on the three levels of memory as a factor of whether the texts were reread before versus after one week. Participants (N = 42) read a set of stories, re-read them either before or after one week (with an inter-study interval of three days, seven days, or fourteen days), and then took a recognition test, from which the three levels of representation were derived. Signal detection results from this study reveal that differential patterns at the three levels as a factor of whether the narratives were re-read prior to one week or after one week. In particular, an ANOVA revealed that surface form memory was lower (p = .08) while textbase (p = .02) and event model memory (p = .04) were greater if narratives were re-read 14 days later compared to memory when narratives were re-read 3 days later. These results have implications for what type of memory benefits from distributed practice at various inter-study intervals.
A Simple User Administration View of Computing Clusters
In this paper a very simple and effective user administration view of computing clusters systems is implemented in order of friendly provide the configuration and monitoring of distributed application executions. The user view, the administrator view, and an internal control module create an illusionary management environment for better system usability. The architecture, properties, performance, and the comparison with others software for cluster management are briefly commented.
Energy Trading for Cooperative Microgrids with Renewable Energy Resources
Micro-grid equipped with heterogeneous energy resources present the idea of small scale distributed energy management (DEM). DEM helps in minimizing the transmission and operation costs, power management and peak load demands. Micro-grids are collections of small, independent controllable power-generating units and renewable energy resources. Micro-grids also motivate to enable active customer participation by giving accessibility of real-time information and control to the customer. The capability of fast restoration against faulty situation, integration of renewable energy resources and Information and Communication Technologies (ICT) make micro-grid as an ideal system for distributed power systems. Micro-grids can have a bank of energy storage devices. The energy management system of micro-grid can perform real-time energy forecasting of renewable resources, energy storage elements and controllable loads in making proper short-term scheduling to minimize total operating costs. We present a review of existing micro-grids optimization objectives/goals, constraints, solution approaches and tools used in micro-grids for energy management. Cost-benefit analysis of micro-grid reveals that cooperation among different micro-grids can play a vital role in the reduction of import energy cost and system stability. Cooperative micro-grids energy trading is an approach to electrical distribution energy resources that allows local energy demands more control over the optimization of power resources and uses. Cooperation among different micro-grids brings the interconnectivity and power trading issues. According to the literature, it shows that open area of research is available for cooperative micro-grids energy trading. In this paper, we proposed and formulated the efficient energy management/trading module for interconnected micro-grids. It is believed that this research will open new directions in future for energy trading in cooperative micro-grids/interconnected micro-grids.
Implementation of a Serializer to Represent PHP Objects in the Extensible Markup Language
Interoperability in distributed systems is an important feature that refers to the communication of two applications written in different programming languages. This paper presents a serializer and a de-serializer of PHP objects to and from XML, which is an independent library written in the PHP programming language. The XML generated by this serializer is independent of the programming language, and can be used by other existing Web Objects in XML (WOX) serializers and de-serializers, which allow interoperability with other object-oriented programming languages.
A Case Study of Assessing the Impact of Electronic Payment System on the Service Delivery of Banks in Nigeria
Electronic payment system is simply a payment or monetary transaction made over the internet or a network of computers. This study was carried out in order to assess how electronic payment system has impacted on banks service delivery, to examine the efficiency of electronic payment system in Nigeria and to determine the level of customer's satisfaction as a direct result of the deployment of electronic payment systems. It is an empirical study conducted using structured questionnaire distributed to officials and customers of Access Bank plc. Chi-square(x2) was adopted for the purpose of data analysis. The result of the study showed that the development of electronic payment system offer great benefit to bank customers including improved services, reduced turn-around time, ease of banking transaction, significant cost saving etc. The study recommends that customer protection laws should be properly put in place to safeguard the interest of end users of e-payment instruments.
Tracing Back the Bot Master
The current situation in the cyber world is that crimes performed by Botnets are increasing and the masterminds (botmaster) are not detectable easily. The botmaster in the botnet compromises the legitimate host machines in the network and make them bots or zombies to initiate the cyber-attacks. This paper will focus on the live detection of the botmaster in the network by using the strong framework 'metasploit', when distributed denial of service (DDOS) attack is performed by the botnet. The affected victim machine will be continuously monitoring its incoming packets. Once the victim machine gets to know about the excessive count of packets from any IP, that particular IP is noted and details of the noted systems are gathered. Using the vulnerabilities present in the zombie machines (already compromised by botmaster), the victim machine will compromise them. By gaining access to the compromised systems, applications are run remotely. By analyzing the incoming packets of the zombies, the victim comes to know the address of the botmaster. This is an effective and a simple system where no specific features of communication protocol are considered.
AMBICOM: An Ambient Computing Middleware Architecture for Heterogeneous Environments
Ambient Computing or Ambient Intelligence (AmI) is emerging area in computer science aiming to create intelligently connected environments and Internet of Things. In this paper, we propose communication middleware architecture for AmI. This middleware architecture addresses problems of communication, networking, and abstraction of applications, although there are other aspects (e.g. HCI and Security) within general AmI framework. Within this middleware architecture, any application developer might address HCI and Security issues with extensibility features of this platform.
An Efficient FPGA Realization of Fir Filter Using Distributed Arithmetic
Most fundamental part used in many Digital Signal Processing (DSP) application is a Finite Impulse Response (FIR) filter because of its linear phase, stability and regular structure. Designing a high-speed and hardware efficient FIR filter is a very challenging task as the complexity increases with the filter order. In most applications the higher order filters are required but the memory usage of the filter increases exponentially with the order of the filter. Using multipliers occupy a large chip area and need high computation time. Multiplier-less memory-based techniques have gained popularity over past two decades due to their high throughput processing capability and reduced dynamic power consumption. This paper describes the design and implementation of highly efficient Look-Up Table (LUT) based circuit for the implementation of FIR filter using Distributed arithmetic algorithm. It is a multiplier less FIR filter. The LUT can be subdivided into a number of LUT to reduce the memory usage of the LUT for higher order filter. Analysis on the performance of various filter orders with different address length is done using Xilinx 14.5 synthesis tool. The proposed design provides less latency, less memory usage and high throughput.
A Graph Theoretic Algorithm for Bandwidth Improvement in Computer Networks
Given two distinct vertices (nodes) source s and target t of a graph G = (V, E), the two node-disjoint paths problem is to identify two node-disjoint paths between s ∈ V and t ∈ V . Two paths are node-disjoint if they have no common intermediate vertices. In this paper, we present an algorithm with O(m)-time complexity for finding two node-disjoint paths between s and t in arbitrary graphs where m is the number of edges. The proposed algorithm has a wide range of applications in ensuring reliability and security of sensor, mobile and fixed communication networks.
Distributed Processing for Content Based Lecture Video Retrieval on Hadoop Framework
There is huge amount of lecture video data available for public use, and many more lecture videos are being created and uploaded every day. Searching for videos on required topics from this huge database is a challenging task. Therefore, an efficient method for video retrieval is needed. An approach for automated video indexing and video search in large lecture video archives is presented. As the amount of video lecture data is huge, it is very inefficient to do the processing in a centralized computation framework. Hence, Hadoop Framework for distributed computing for Big Video Data is used. First, step in the process is automatic video segmentation and key-frame detection to offer a visual guideline for the video content navigation. In the next step, we extract textual metadata by applying video Optical Character Recognition (OCR) technology on key-frames. The OCR and detected slide text line types are adopted for keyword extraction, by which both video- and segment-level keywords are extracted for content-based video browsing and search. The performance of the indexing process can be improved for a large database by using distributed computing on Hadoop framework.
Productivity and Structural Design of Manufacturing Systems
Productivity of the manufacturing systems depends on technological processes, a technical data of machines and a structure of systems. Technology is presented by the machining mode and data, a technical data presents reliability parameters and auxiliary time for discrete production processes. The term structure of manufacturing systems includes the number of serial and parallel production machines and links between them. Structures of manufacturing systems depend on the complexity of technological processes. Mathematical models of productivity rate for manufacturing systems are important attributes that enable to define best structure by criterion of a productivity rate. These models are important tool in evaluation of the economical efficiency for production systems.
A Research Using Remote Monitoring Technology for Pump Output Monitoring in Distributed Fuel Stations in Nigeria
This research paper discusses a web based monitoring system that enables effective monitoring of fuel pump output and sales volume from distributed fuel stations under the domain of a single company/organization. The traditional method of operation by these organizations in Nigeria is non-automated and accounting for dispensed product is usually approximated and manual as there is little or no technology implemented to presently provide information relating to the state of affairs in the station both to on-ground staff and to supervisory staff that are not physically present in the station. This results in unaccountable losses in product and revenue as well as slow decision making. Remote monitoring technology as a vast research field with numerous application areas incorporating various data collation techniques and sensor networks can be applied to provide information relating to fuel pump status in distributed fuel stations reliably. Thus, the proposed system relies upon a microcontroller, keypad and pump to demonstrate the traditional fuel dispenser. A web-enabled PC with an accompanying graphic user interface (GUI) was designed using virtual basic which is connected to the microcontroller via the serial port which is to provide the web implementation.
Investigation of Chord Protocol in Peer to Peer Wireless Mesh Network with Mobility
File sharing in networks are generally achieved using Peer-to-Peer (P2P) applications. Structured P2P approaches are widely used in adhoc networks due to its distributed and scalability features. Efficient mechanisms are required to handle the huge amount of data distributed to all peers. The intrinsic characteristics of P2P system makes for easier content distribution when compared to client-server architecture. All the nodes in a P2P network act as both client and server, thus, distributing data takes lesser time when compared to the client-server method. CHORD protocol is a resource routing based where nodes and data items are structured into a 1- dimensional ring. The structured lookup algorithm of Chord is advantageous for distributed P2P networking applications. Though, structured approach improves lookup performance in a high bandwidth wired network it could contribute to unnecessary overhead in overlay networks leading to degradation of network performance. In this paper, the performance of existing CHORD protocol on Wireless Mesh Network (WMN) when nodes are static and dynamic is investigated.
Mathematical Analysis of Simple Supported Euler-Bernoulli Beam on a Variable Elastic Foundation under a Partially Distributed Moving Load
The dynamic responses of an elastically supported Euler- Bernoulli beam on variable elastic foundation under partially distributed moving loads were investigated. The governing equation is fourth order partial differential equation, which was reduced to second order ordinary differential equation by using the analytical method in terms of series solution and solved by a numerical method using mathematical software (Maple). The numerical analysis shows that the response amplitude of the moving mass and moving force for variable pre-stressed increase as mass of the load M increases. It was found that the response displacement of the beam decreases as the value of the elastic foundation K increases. Also, the response displacement of the beam decreases as the value of the pre-stressed N increase. Comparison of moving mass and moving force shown that moving mass is greater than that of moving force.
Advanced Numerical and Analytical Methods for Assessing Concrete Sewers and Their Remaining Service Life
Pipelines are extensively used engineering structures which convey fluid from one place to another. Most of the time, pipelines are placed underground and are encumbered by soil weight and traffic loads. Corrosion of pipe material is the most common form of pipeline deterioration and should be considered in both the strength and serviceability analysis of pipes. The study in this research focuses on concrete pipes in sewage systems (concrete sewers). This research firstly investigates how to involve the effect of corrosion as a time dependent process of deterioration in the structural and failure analysis of this type of pipe. Then three probabilistic time dependent reliability analysis methods including the first passage probability theory, the gamma distributed degradation model and the Monte Carlo simulation technique are discussed and developed. Sensitivity analysis indexes which can be used to identify the most important parameters that affect pipe failure are also discussed. The reliability analysis methods developed in this paper contribute as rational tools for decision makers with regard to the strengthening and rehabilitation of existing pipelines. The results can be used to obtain a cost-effective strategy for the management of the sewer system.
Performance of Staggered Wall Buildings Subjected to Low to Medium Earthquake Loads
In this study seismic performance of typical reinforced concrete staggered wall system structures was evaluated through nonlinear static and incremental dynamic analyses. To this end, and 15-story SWS structures were designed and were analyzed to obtain their nonlinear force-displacement relationships. The analysis results showed that the 5-story SWS structures failed due to yielding of columns and walls located in the lower stories, whereas in the 15-story structures plastic hinges were more widely distributed throughout the stories.
Reviewing Privacy Preserving Distributed Data Mining
Nowadays considering human involved in increasing data development some methods such as data mining to extract science are unavoidable. One of the discussions of data mining is inherent distribution of the data usually the bases creating or receiving such data belong to corporate or non-corporate persons and do not give their information freely to others. Yet there is no guarantee to enable someone to mine special data without entering in the owner’s privacy. Sending data and then gathering them by each vertical or horizontal software depends on the type of their preserving type and also executed to improve data privacy. In this study it was attempted to compare comprehensively preserving data methods; also general methods such as random data, coding and strong and weak points of each one are examined.
Cross-Layer Design of Event-Triggered Adaptive OFDMA Resource Allocation Protocols with Application to Vehicle Clusters
We propose an event-triggered algorithm for the solution of a distributed optimization problem by means of the projected subgradient method. Thereby, we invoke an OFDMA resource allocation scheme by applying an event-triggered sensitivity analysis at the access point. The optimal resource assignment of the subcarriers to the involved wireless nodes is carried out by considering the sensitivity analysis of the overall objective function as defined by the control of vehicle clusters with respect to the information exchange between the nodes.
Hierarchical Checkpoint Protocol in Data Grids
Grid of computing nodes has emerged as a representative means of connecting distributed computers or resources scattered all over the world for the purpose of computing and distributed storage. Since fault tolerance becomes complex due to the availability of resources in decentralized grid environment, it can be used in connection with replication in data grids. The objective of our work is to present fault tolerance in data grids with data replication-driven model based on clustering. The performance of the protocol is evaluated with Omnet++ simulator. The computational results show the efficiency of our protocol in terms of recovery time and the number of process in rollbacks.
Study of Quantum Lasers of Random Trimer Barrier AlxGa1-xAs Superlattices
We have numerically studied the random trimer barrier AlxGa1-xAs superlattices (RTBSL). Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that the barriers of one kind appear in triply. An explicit formula is given for evaluating the transmission coefficient of superlattices (SL's) in intentional correlated disorder. We have specially investigated the effect of aluminum concentration on the laser wavelength. We discuss the impact of the aluminum concentration associated with the structure profile on the laser wavelengths.
A Project-Orientated Training Concept to Prepare Students for Systems Engineering Activities
Systems Engineering plays a key role during industrial product development of complex technical systems. The need for systems engineers in industry is growing. However, there is a gap between the industrial need and the academic education. Normally the academic education is focused on the domain specific design, implementation and testing of technical systems. Necessary systems engineering expertise like knowledge about requirements analysis, product cost estimation, management or social skills are poorly taught. Thus, there is the need of new academic concepts for teaching systems engineering skills. This paper presents a project-orientated training concept to prepare students from different technical degree programs for systems engineering activities. The training concept has been initially implemented and applied in the industrial engineering master program of the University of Applied Sciences Offenburg.
Healthcare Big Data Analytics Using Hadoop
Healthcare industry is generating large amounts of data driven by various needs such as record keeping, physician’s prescription, medical imaging, sensor data, Electronic Patient Record(EPR), laboratory, pharmacy, etc. Healthcare data is so big and complex that they cannot be managed by conventional hardware and software. The complexity of healthcare big data arises from large volume of data, the velocity with which the data is accumulated and different varieties such as structured, semi-structured and unstructured nature of data. Despite the complexity of big data, if the trends and patterns that exist within the big data are uncovered and analyzed, higher quality healthcare at lower cost can be provided. Hadoop is an open source software framework for distributed processing of large data sets across clusters of commodity hardware using a simple programming model. The core components of Hadoop include Hadoop Distributed File System which offers way to store large amount of data across multiple machines and MapReduce which offers way to process large data sets with a parallel, distributed algorithm on a cluster. Hadoop ecosystem also includes various other tools such as Hive (a SQL-like query language), Pig (a higher level query language for MapReduce), Hbase(a columnar data store), etc. In this paper an analysis has been done as how healthcare big data can be processed and analyzed using Hadoop ecosystem.
A Survey on Linear Time Invariant Multivariable Positive Real Systems
Positive realness as the most important property of driving point impedance of passive electrical networks appears in the control systems stability theory in 1960’s. There are three important subsets of positive real (PR) systems are introduced by researchers, that is, loos-less positive real (LLPR) systems, weakly strictly positive real (WSPR) systems and strictly positive real (SPR) systems. In this paper, definitions, properties, lemmas, and theorems related to family of positive real systems are summarized. Properties in both frequency domain and state space representation of system are explained. Also, several illustrative examples are presented.
Statistical Modeling of Local Area Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes
Multi path fading noise degrades the performance of cellular communication, most notably in femto- and pico-cells in 3G and 4G systems. When the wireless channel consists of a small number of scattering paths, the statistics of fading noise is not analytically tractable and poses a serious challenge to developing closed canonical forms that can be analysed and used in the design of efficient and optimal receivers. In this context, noise is multiplicative and is referred to as stochastically local fading. In many analytical investigation of multiplicative noise, the exponential or Gamma statistics are invoked. More recent advances by the author of this paper have utilized a Poisson modulated and weighted generalized Laguerre polynomials with controlling parameters and uncorrelated noise assumptions. In this paper, we investigate the statistics of multi-diversity stochastically local area fading channel when the channel consists of randomly distributed Rayleigh and Rician scattering centers with a coherent specular Nakagami-distributed line of sight component and an underlying doubly stochastic Poisson process driven by a lognormal intensity. These combined statistics form a unifying triply stochastic filtered marked Poisson point process model.
Application of Simulated Annealing to Threshold Optimization in Distributed OS-CFAR System
This paper proposes an application of the simulated annealing to optimize the detection threshold in an ordered statistics constant false alarm rate (OS-CFAR) system. Using conventional optimization methods, such as the conjugate gradient, can lead to a local optimum and lose the global optimum. Also for a system with a number of sensors that is greater than or equal to three, it is difficult or impossible to find this optimum; Hence, the need to use other methods, such as meta-heuristics. From a variety of meta-heuristic techniques, we can find the simulated annealing (SA) method, inspired from a process used in metallurgy. This technique is based on the selection of an initial solution and the generation of a near solution randomly, in order to improve the criterion to optimize. In this work, two parameters will be subject to such optimisation and which are the statistical order (k) and the scaling factor (T). Two fusion rules; “AND” and “OR” were considered in the case where the signals are independent from sensor to sensor. The results showed that the application of the proposed method to the problem of optimisation in a distributed system is efficiency to resolve such problems. The advantage of this method is that it allows to browse the entire solutions space and to avoid theoretically the stagnation of the optimization process in an area of local minimum.
Prosperous Digital Image Watermarking Approach by Using DCT-DWT
In this paper, everyday tons of data is embedded on digital media or distributed over the internet. The data is so distributed that it can easily be replicated without error, putting the rights of their owners at risk. Even when encrypted for distribution, data can easily be decrypted and copied. One way to discourage illegal duplication is to insert information known as watermark, into potentially valuable data in such a way that it is impossible to separate the watermark from the data. These challenges motivated researchers to carry out intense research in the field of watermarking. A watermark is a form, image or text that is impressed onto paper, which provides evidence of its authenticity. Digital watermarking is an extension of the same concept. There are two types of watermarks visible watermark and invisible watermark. In this project, we have concentrated on implementing watermark in image. The main consideration for any watermarking scheme is its robustness to various attacks
Event Monitoring Based On Web Services for Heterogeneous Event Sources
This article discusses event monitoring options for heterogeneous event sources as they are given in nowadays heterogeneous distributed information systems. It follows the central assumption, that a fully generic event monitoring solution cannot provide complete support for event monitoring; instead, event source specific semantics such as certain event types or support for certain event monitoring techniques have to be taken into account. Following from this, the core result of the work presented here is the extension of a configurable event monitoring (Web) service for a variety of event sources. A service approach allows us to trade genericity for the exploitation of source specific characteristics. It thus delivers results for the areas of SOA, Web services, CEP and EDA.
A New Method Presentation for Locating Fault in Power Distribution Feeders Considering DG
In this paper, an improved impedance based fault location method is proposed. In this method, online fault locating is performed using voltage and current information at the beginning of the feeder. Determining precise fault location in a short time increases reliability and efficiency of the system. The proposed method utilizes information about main component of voltage and current at the beginning of the feeder and distributed generation unit (DGU) in order to precisely locate different faults in acceptable time. To evaluate precision and accuracy of the proposed method, a 13-node is simulated and tested using MATLAB.
e-Learning Security: A Distributed Incident Response Generator
An e-Learning setting is a distributed computing environment where information resources can be connected to any public network. Public networks are very unsecure which can compromise the reliability of an e-Learning environment. This study is only concerned with the intrusion detection aspect of e-Learning security and how incident responses are planned. The literature reported great advances in intrusion detection system (ids) but neglected to study an important ids weakness: suspected events are detected but an intrusion is not determined because it is not defined in ids databases. We propose an incident response generator (DIRG) that produces incident responses when the working ids system suspects an event that does not correspond to a known intrusion. Data involved in intrusion detection when ample uncertainty is present is often not suitable to formal statistical models including Bayesian. We instead adopt Dempster and Shafer theory to process intrusion data for the unknown event. The DIRG engine transforms data into a belief structure using incident scenarios deduced by the security administrator. Belief values associated with various incident scenarios are then derived and evaluated to choose the most appropriate scenario for which an automatic incident response is generated. This article provides a numerical example demonstrating the working of the DIRG system.
eTransformation Framework for the Cognitive Systems
Digital systems are in the cognitive wave of the eTransformations and are now extensively aimed at meeting the individuals’ demands, both those of customers requiring services and those of service providers. It is also apparent that successful future systems will not just simply open doors to the traditional owners/users to offer and receive services such as Uber for example does today, but will in the future require more customized and cognitively enabled infrastructures that will be responsive to the system user’s needs. To be able to identify what is required for such systems, this research reviews the historical and the current effects of the eTransformation process by studying: 1. eTransitions of company websites and mobile applications, 2. Emergence of new sheared economy business models as Uber and, 3. New requirements for demand driven, cognitive systems capable of learning and just in time decision making. Based on the analysis, this study proposes a Cognitive eTransformation Framework capable of guiding implementations of new responsive and user aware systems.
A Distributed Cryptographically Generated Address Computing Algorithm for Secure Neighbor Discovery Protocol in IPv6
Due to shortage in IPv4 addresses, transition to IPv6 has gained significant momentum in recent years. Like Address Resolution Protocol (ARP) in IPv4, Neighbor Discovery Protocol (NDP) provides some functions like address resolution in IPv6. Besides functionality of NDP, it is vulnerable to some attacks. To mitigate these attacks, Internet Protocol Security (IPsec) was introduced, but it was not efficient due to its limitation. Therefore, SEND protocol is proposed to automatic protection of auto-configuration process. It is secure neighbor discovery and address resolution process. To defend against threats on NDP’s integrity and identity, Cryptographically Generated Address (CGA) and asymmetric cryptography are used by SEND. Besides advantages of SEND, its disadvantages like the computation process of CGA algorithm and sequentially of CGA generation algorithm are considerable. In this paper, we parallel this process between network resources in order to improve it. In addition, we compare the CGA generation time in self-computing and distributed-computing process. We focus on the impact of the malicious nodes on the CGA generation time in the network. According to the result, although malicious nodes participate in the generation process, CGA generation time is less than when it is computed in a one-way. By Trust Management System, detecting and insulating malicious nodes is easier.
Active Hybrid Voltage Control of Distribution Grid with High Share of Inverter Based Distributed Generations
With the increasing number of inverter based distributed generations (DG) being installed on the low-voltage (LV) level and the intermittent nature of the sun irradiance, issues like voltage fluctuations arise in the grid. To overcome the possible under-voltage and over-voltage situations a hybrid control strategy is proposed in this paper. The strategy adjusts active and reactive power generation of the inverters based on the commands from the local controller and the voltage at the point of common coupling (PCC). The strategy incorporates reactive power allocation algorithm to divide the reactive current between the inverters, based on their active power production. In order not to exceed the thermal limits of the inverters, the strategy takes into account the ratings of the inverters. The strategy is designed following the latest grid codes used in Europe. The behavior of the strategy is studied on a model of LV network connected to a medium voltage grid through a step-up transformer. The system is modeled using Matlab/SimPowerSystems. The performance of the strategy is compared to other conventional control strategies such as primary voltage control (PVC) and secondary voltage control (SVC). The proposed strategy proofs to provide better grid voltage profile compared to PVC and SVC and successfully keeps the voltage within permissible margins during over-excited and under-excited operation of the grid.
Framework for the Modeling of the Supply Chain Collaborative Planning Process
In this work a Framework to model the Supply Chain (SC) Collaborative Planning (CP) Process is proposed, and particularly its Decisional view. The main Framework contributions with regards to previous related works are the following, 1) the consideration of not only the Decision view, the most important one due to the Process type, but other additional three views which are the Physical, Organisation and Information ones, closely related and complementing the Decision View, 2) the joint consideration of two interdependence types, the Temporal (among Decision Centres belonging to different Decision Levels) and Spatial (among Decision Centres belonging to the same Decision Level) to support the distributed Decision-Making process in SC where several decision Centres interact among them in a collaborative manner.
The Parallelization of Algorithm Based on Partition Principle for Association Rules Discovery
subsequently the expansion of the physical supports storage and the needs ceaseless to accumulate several data, the sequential algorithms of associations’ rules research proved to be ineffective. Thus the introduction of the new parallel versions is imperative. We propose in this paper, a parallel version of a sequential algorithm “Partition”. This last is fundamentally different from the other sequential algorithms, because it scans the data base only twice to generate the significant association rules. By consequence, the parallel approach does not require much communication between the sites. The proposed approach was implemented for an experimental study. The obtained results, shows a great reduction in execution time compared to the sequential version and Count Distributed algorithm.
Attractiveness of Cafeteria Systems as Viewed by Generation Z
Contemporary conditions force companies to constantly implement changes and improvements, which is connected with plasticization of their activity in all spheres. Cafeteria systems are a good example of flexible remuneration systems. Cafeteria systems are well-known and often used in the United States, Great Britain and in Western Europe. In Poland, they are hardly ever used and greater flexibility in remuneration packages refers mainly to senior managers and executives. The main aim of this article is to research the attractiveness of the cafeteria system as viewed by generation Z. The additional aim of the article is to prioritize using the importance index of particular types of cafeteria systems from the generation Z’s perspective, as well as to identify the factors which determine the development of cafeteria systems in Poland. The research was conducted in June 2015 among 185 young employees (generation Z). The paper presents some of the results.
Design and Development of Fleet Management System for Multi-Agent Autonomous Surface Vessel
Agent-based systems technology has been addressed as a new paradigm for conceptualizing, designing, and implementing software systems. Agents are sophisticated systems that act autonomously across open and distributed environments in solving problems. Nevertheless, it is impractical to rely on a single agent to do all computing processes in solving complex problems. An increasing number of applications lately require multiple agents to work together. A multi-agent system (MAS) is a loosely coupled network of agents that interact to solve problems that are beyond the individual capacities or knowledge of each problem solver. However, the network of MAS still requires a main system to govern or oversees the operation of the agents in order to achieve a unified goal. We had developed a fleet management system (FMS) in order to manage the fleet of agents, plan route for the agents, perform real-time data processing and analysis, and issue sets of general and specific instructions to the agents. This FMS should be able to perform real-time data processing, communicate with the autonomous surface vehicle (ASV) agents and generate bathymetric map according to the data received from each ASV unit. The first algorithm is developed to communicate with the ASV via radio communication using standard National Marine Electronics Association (NMEA) protocol sentences. Next, the second algorithm will take care of the path planning, formation and pattern generation is tested using various sample data. Lastly, the bathymetry map generation algorithm will make use of data collected by the agents to create bathymetry map in real-time. The outcome of this research is expected can be applied on various other multi-agent systems.
Variation of Streamwise and Vertical Turbulence Intensity in a Smooth and Rough Bed Open Channel Flow
An experimental study with four different types of bed conditions was carried out to understand the effect of roughness in open channel flow at two different Reynolds numbers. The bed conditions include a smooth surface and three different roughness conditions which were generated using sand grains with a median diameter of 2.46 mm. The three rough conditions include a surface with distributed roughness, a surface with continuously distributed roughness and a sand bed with a permeable interface. A commercial two-component fibre-optic LDA system was used to conduct the velocity measurements. The variables of interest include the mean velocity, turbulence intensity, the correlation between the streamwise and the wall normal turbulence, Reynolds shear stress and velocity triple products. Quadrant decomposition was used to extract the magnitude of the Reynolds shear stress of the turbulent bursting events. The effect of roughness was evident throughout the flow depth. The results show that distributed roughness has the greatest roughness effect followed by the sand bed and the continuous roughness. Compared to the smooth bed, the streamwise turbulence intensity reduces but the vertical turbulence intensity increases at a location very close to the bed due to the introduction of roughness. Although the same sand grain is used to create the three different rough bed conditions, the difference in the turbulence intensity is an indication that the specific geometry of the roughness has an influence on turbulence structure.
A Multi-Role Oriented Collaboration Platform for Distributed Disaster Reduction in China
As the rapid development of urbanization, economic developments, and steady population growth in China, the widespread devastation, economic damages, and loss of human lives caused by numerous forms of natural disasters are becoming increasingly serious every year. Disaster management requires available and effective cooperation of different roles and organizations in whole process including mitigation, preparedness, response and recovery. Due to the imbalance of regional development in China, the disaster management capabilities of national and provincial disaster reduction centers are uneven. When an undeveloped area suffers from disaster, neither local reduction department could get first-hand information like high-resolution remote sensing images from satellites and aircrafts independently, nor sharing mechanism is provided for the department to access to data resources deployed in other place directly. Most existing disaster management systems operate in a typical passive data-centric mode and work for single department, where resources cannot be fully shared. The impediment blocks local department and group from quick emergency response and decision-making. In this paper, we introduce a collaborative platform for distributed disaster reduction. To address the issues of imbalance of sharing data sources and technology in the process of disaster reduction, we propose a multi-role oriented collaboration business mechanism, which is capable of scheduling and allocating for optimum utilization of multiple resources, to link various roles for collaborative reduction business in different place. The platform fully considers the difference of equipment conditions in different provinces and provide several service modes to satisfy technology need in disaster reduction. An integrated collaboration system based on focusing services mechanism is designed and implemented for resource scheduling, functional integration, data processing, task management, collaborative mapping, and visualization. Actual applications illustrate that the platform can well support data sharing and business collaboration between national and provincial department. It could significantly improve the capability of disaster reduction in China.
Human Tracking across Heterogeneous Systems Based on Mobile Agent Technologies
In a human tracking system, expanding a monitoring range of one system is complicating the management of devices and increasing its cost. Therefore, we propose a method to realize a wide-range human tracking by connecting small systems. In this paper, we examined an agent deploy method and information contents across the heterogeneous human tracking systems. By implementing the proposed method, we can construct a human tracking system across heterogeneous systems, and the system can track a target continuously between systems.
Effect of DG Installation in Distribution System for Voltage Monitoring Scheme
Loss minimization is a long progressing issue mainly in distribution system. Nevertheless, its effect led to temperature rise due to significant voltage drop through the distribution line. Thus, compensation scheme should be proper scheduled in the attempt to alleviate the voltage drop phenomenon. Distributed generation has been profoundly known for voltage profile improvement provided that over-compensation or under-compensation phenomena are avoided. This paper addresses the issue of voltage improvement through different type DG installation. In ensuring optimal sizing and location of the DGs, predeveloped EMEFA technique was made to be used for this purpose. Incremental loading condition subjected to the system is the concern such that it is beneficial to the power system operator.
Effects of Charge Fluctuating Positive Dust on Linear Dust-Acoustic Waves
The Linear propagation of the dust-acoustic wave in a dusty plasma consisting of Boltzmann distributed electrons and ions and mobile charge fluctuating positive dust grains has been investigated by employing the reductive perturbation method. It has been shown that the dust charge fluctuation is a source of dissipation and its responsible for the formation of the dust-acoustic waves in such a dusty plasma. The basic features of such dust-acoustic waves have been identified. It has been proposed to design a new laboratory experiment which will be able to identify the basic features of the dust-acoustic waves predicted in this theoretical investigation.
Distributed Control Strategy for Dispersed Energy Storage Units in the DC Microgrid Based on Discrete Consensus
The SOC (state of charge) based droop control has limitations on the load power sharing among different energy storage units, due to the line impedance. In this paper, a distributed control strategy for dispersed energy storage units in the DC microgrid based on discrete consensus is proposed. Firstly, a sparse information communication network is built. Thus, local controllers can communicate with its neighbors using voltage, current and SOC information. An average voltage of grid can be evaluated to compensate voltage offset by droop control, and an objective virtual resistance fulfilling above requirement can be dynamically calculated to distribute load power according to the SOC of the energy storage units. Then, the stability of the whole system and influence of communication delay are analyzed. It can be concluded that this control strategy can improve the robustness and flexibility, because of having no center controller. Finally, a model of DC microgrid with dispersed energy storage units and loads is built, the discrete distributed algorithm is established and communication protocol is developed. The co-simulation between Matlab/Simulink and JADE (Java agent development framework) has verified the effectiveness of proposed control strategy.
Stress Field Induced By an Interfacial Edge Dislocation in a Multi-Layered Medium
A novel method is presented for obtaining the stress field induced by an edge dislocation in a multilayered composite. To demonstrate the applications of the obtained solution, we consider the problem of an interfacial crack in a periodically layered bimaterial medium. The crack is modeled as a continuous distribution of edge dislocations and the Distributed Dislocation Technique (DDT) is utilized to obtain numerical results for the energy release rate (ERR). The numerical results correspond well with previously published results and the comparison serves as a validation of the obtained dislocation solution.
A Spectral Decomposition Method for Ordinary Differential Equation Systems with Constant or Linear Right Hand Sides
In this paper, a spectral decomposition method is developed for the direct integration of stiff and nonstiff homogeneous linear (ODE) systems with linear, constant, or zero right hand sides (RHSs). The method does not require iteration but obtains solutions at any random points of t, by direct evaluation, in the interval of integration. All the numerical solutions obtained for the class of systems coincide with the exact theoretical solutions. In particular, solutions of homogeneous linear systems, i.e. with zero RHS, conform to the exact analytical solutions of the systems in terms of t.
Stress Concentration around Countersunk Hole in Isotropic Plate under Transverse Loading
An investigation into the effect of countersunk depth, plate thickness, countersunk angle and plate width on the stress concentration around countersunk hole is carried out with the help of finite element analysis. The variation of stress concentration with respect to these parameters is studied for three types of loading viz. uniformly distributed load, uniformly varying load and functionally distributed load. The results of the finite element analysis are interpreted and some conclusions are drawn. The distribution of stress concentration around countersunk hole in isotropic plates simply supported at all the edges is found similar and is independent of loading. The maximum stress concentration also occurs at a particular point irrespective of the loading conditions.
Investigation into Micro-Grids with Renewable Energy Sources for Use as High Reliability Electrical Power Supply in a Nuclear Facility
The objective of this research work is to investigate the use of a micro-grid system to improve the reliability and availability of emergency electrical power in a nuclear facility. The nuclear facility is a safety-critical application that requires reliable electrical power for safe startup, operation and normal or emergency shutdown conditions. The majority of the nuclear facilities around the world utilize diesel generators as emergency power supply during loss of offsite power events. This study proposes the micro-grid system with distributed energy sources and energy storage systems for use as emergency power supply. The systems analyzed include renewable energy sources, decay heat recovery system and large scale energy storage system. The configuration of the micro-grid system is realized with guidelines of nuclear safety standards and requirements. The investigation results presented include performance analysis of the micro-grid system in terms of reliability and availability.
Zero Net Energy Communities and the Impacts to the Grid
The electricity grid is changing in terms of flexibility. Distributed generation (DG) policy is being discussed worldwide and implemented. Developers and utilities are seeking a pathway towards Zero Net Energy (ZNE) communities and the interconnection to the distribution grid. Using the VISDOM platform for establishing a method for managing and monitoring energy consumption loads of ZNE communities as a capacity resource for the grid. Reductions in greenhouse gas emissions and energy security are primary policy drivers for incorporating high-performance energy standards and sustainability practices in residential households, such as a market transformation of ZNE and nearly ZNE (nZNE) communities. This research investigates how load data impacts ZNE, to see if there is a correlation to the daily load variations in a single ZNE home. Case studies will include a ZNE community in California and a nearly ZNE community (All – Electric) in the Netherlands, which both are in measurement and verification (M&V) phases and connected to the grid for simulations of methods.
A Review of Information Systems Development in Developing Countries
Information systems (IS) are highly important in the operation of private and public organisations in developing and developed countries. Developing countries are saddled with many project failures during the implementation of information systems. However, successful information systems are greatly needed in developing countries in order to enhance their economies. This paper is highly important in view of the high failure rate of information systems in developing countries which needs to be reduced to minimum acceptable levels by means of recommended interventions. This paper centres on a review of IS development in developing countries. The paper presents evidences of the IS successes and failures in developing countries and posits a model to address the IS failures. The proposed model can then be utilised by developing countries to reduce their IS project implementation failure rate. A comparison is drawn between IS development in developing countries and developed countries. The paper provides valuable information to assist in reducing IS failure, and developing IS models and theories on IS development for developing countries.
Non-Homogeneous Layered Fiber Reinforced Concrete
Fiber reinforced concrete is important material for load bearing structural elements. Usually fibers are homogeneously distributed in a concrete body having arbitrary spatial orientations. At the same time, in many situations, fiber concrete with oriented fibers is more optimal. Is obvious, that is possible to create constructions with oriented short fibers in them, in different ways. Present research is devoted to one of such approaches- fiber reinforced concrete prisms having dimensions 100 mm×100 mm×400 mm with layers of non-homogeneously distributed fibers inside them were fabricated. Simultaneously prisms with homogeneously dispersed fibers were produced for reference as well. Prisms were tested under four point bending conditions. During the tests vertical deflection at the center of every prism and crack opening were measured (using linear displacements transducers in real timescale). Prediction results were discussed.
An Ontology for Semantic Enrichment of RFID Systems
Radio Frequency Identification (RFID) has become a key technology in the margining concept of Internet of Things (IoT). Naturally, business applications would require the deployment of various RFID systems that are developed by different vendors and use various data formats. This heterogeneity poses a real challenge in developing large-scale IoT systems with RFID as integration is becoming very complex and challenging. Semantic integration is a key approach to deal with this challenge. To do so, ontology for RFID systems need to be developed in order to annotated semantically RFID systems, and hence, facilitate their integration. Accordingly, in this paper, we propose ontology for RFID systems. The proposed ontology can be used to semantically enrich RFID systems, and hence, improve their usage and reasoning. The usage of the proposed ontology is explained through a simple scenario in the health care domain.
Effect of Composition Fuel on Safety of Combustion Process
Fuel gas used in the burner receives as contributors other gases from different processes and this result in variability in the composition, which may cause an incomplete combustion. The burners are designed to operate in a certain curve, the calorific power dependent on the pressure and gas burners. When deviation of propane and C5+ is huge, there is a large release of energy, which causes it to work out the curves of the burners, because less pressure is required to force curve into operation. That increases the risk of explosion in an oven, besides of a higher environmental impact. There should be flame detection systems, and instrumentation equipment, such as local pressure gauges located at the entrance of the gas burners, to permit verification by the operator. Additionally, distributed control systems must be configured with different combustion instruments associated with respective alarms, as well as its operational windows, and windows control guidelines of integrity, leaving the design information of this equipment. Therefore, it is desirable to analyze when a plant is taken out of service and make good operational analysis to determine the impact of changes in fuel gas streams contributors, by varying the calorific power. Hence, poor combustion is one of the cause instability in the flame of the burner and having a great impact on process safety, the integrity of individuals and teams and environment.
Assessing the Impact of Electronic Payment Systems on the Service Delivery of Banks: Case of Nigeria
The most recent development in the Nigerian payment system is the venture into “electronic payment system”. Electronic payment system is simply a payment or monetary transaction made over the internet or a network of computers. This study was carried out in order to assess how electronic payment system has impacted on banks service delivery, to examine the efficiency of electronic payment system in Nigeria and to determine the level of customer’s satisfaction as a direct result of the deployment of electronic payment systems. The study was conducted using structured questionnaire distributed to 50 bank officials and customers of Access Bank plc. Chi-square(x2) was adopted for the purpose of data analysis. The result of the study showed that the development of electronic payment system offer great benefit to bank customers including; improved services, reduced turn-around time, ease of banking transaction, significant cost saving etc. The study recommend that customer protection laws should be properly put in place to safeguard the interest of end users of e-payment instruments, the banking industry and government should show strong commitment and effort to educate the populace on the benefit of patronizing e-payment system to facilitate economic development.
Compressed Suffix Arrays to Self-Indexes Based on Partitioned Elias-Fano
A practical and simple self-indexing data structure, Partitioned Elias-Fano (PEF) - Compressed Suffix Arrays (CSA), is built in linear time for the CSA based on PEF indexes. Moreover, the PEF-CSA is compared with two classical compressed indexing methods, Ferragina and Manzini implementation (FMI) and Sad-CSA on different type and size files in Pizza & Chili. The PEF-CSA performs better on the existing data in terms of the compression ratio, count, and locates time except for the evenly distributed data such as proteins data. The observations of the experiments are that the distribution of the φ is more important than the alphabet size on the compression ratio. Unevenly distributed data φ makes better compression effect, and the larger the size of the hit counts, the longer the count and locate time.
Parameter Estimation in Dynamical Systems Based on Latent Variables
A novel mathematical approach is suggested, which facilitates a compressed representation and efficient validation of parameter-rich ordinary differential equation models describing the dynamics of complex, especially biology-related, systems and which is based on identification of the system's latent variables. In particular, an efficient parameter estimation method for the compressed non-linear dynamical systems is developed. The method is applied to the so-called 'power-law systems' being non-linear differential equations typically used in Biochemical System Theory.
Reflections on Opportunities and Challenges for Systems Engineering
This paper summarizes some of the discussions that occurred in a workshop in West Virginia, U.S.A which was sponsored by the National Science Foundation (NSF) in February 2016. The goal of the workshop was to explore the opportunities and challenges for applying systems engineering in large enterprises, and some of the issues that still persist. The main topics of the discussion included challenges with elaboration and abstraction in large systems, interfacing physical and social systems, and the need for axiomatic frameworks for large enterprises. We summarize these main points of discussion drawing parallels with decision making in organizations to instigate research in these discussion areas.
Structuring and Visualizing Healthcare Claims Data Using Systems Architecture Methodology
Healthcare delivery systems around the world are in crisis. The need to improve health outcomes while decreasing healthcare costs have led to an imminent call to action to transform the healthcare delivery system. While Bioinformatics and Biomedical Engineering have primarily focused on biological level data and biomedical technology, there is clear evidence of the importance of the delivery of care on patient outcomes. Classic singular decomposition approaches from reductionist science are not capable of explaining complex systems. Approaches and methods from systems science and systems engineering are utilized to structure healthcare delivery system data. Specifically, systems architecture is used to develop a multi-scale and multi-dimensional characterization of the healthcare delivery system, defined here as the Healthcare Delivery System Knowledge Base. This paper is the first to contribute a new method of structuring and visualizing a multi-dimensional and multi-scale healthcare delivery system using systems architecture in order to better understand healthcare delivery.
RA-Apriori: An Efficient and Faster MapReduce-Based Algorithm for Frequent Itemset Mining on Apache Flink
Extraction of useful information from large datasets is one of the most important research problems. Association rule mining is one of the best methods for this purpose. Finding possible associations between items in large transaction based datasets (finding frequent patterns) is most important part of the association rule mining. There exist many algorithms to find frequent patterns but Apriori algorithm always remains a preferred choice due to its ease of implementation and natural tendency to be parallelized. Many single-machine based Apriori variants exist but massive amount of data available these days is above capacity of a single machine. Therefore, to meet the demands of this ever-growing huge data, there is a need of multiple machines based Apriori algorithm. For these types of distributed applications, MapReduce is a popular fault-tolerant framework. Hadoop is one of the best open-source software frameworks with MapReduce approach for distributed storage and distributed processing of huge datasets using clusters built from commodity hardware. However, heavy disk I/O operation at each iteration of a highly iterative algorithm like Apriori makes Hadoop inefficient. A number of MapReduce-based platforms are being developed for parallel computing in recent years. Among them, two platforms, namely, Spark and Flink have attracted a lot of attention because of their inbuilt support to distributed computations. Earlier we proposed a reduced- Apriori algorithm on Spark platform which outperforms parallel Apriori, one because of use of Spark and secondly because of the improvement we proposed in standard Apriori. Therefore, this work is a natural sequel of our work and targets on implementing, testing and benchmarking Apriori and Reduced-Apriori and our new algorithm ReducedAll-Apriori on Apache Flink and compares it with Spark implementation. Flink, a streaming dataflow engine, overcomes disk I/O bottlenecks in MapReduce, providing an ideal platform for distributed Apriori. Flink's pipelining based structure allows starting a next iteration as soon as partial results of earlier iteration are available. Therefore, there is no need to wait for all reducers result to start a next iteration. We conduct in-depth experiments to gain insight into the effectiveness, efficiency and scalability of the Apriori and RA-Apriori algorithm on Flink.
A Performance Analysis Study for Cloud Based ERP Systems
The manufacturing and service organizations are in the need of using ERP systems to integrate many functions from purchasing to storage, production planning to calculation of costs. Using ERP systems by the integration in the level of information provides companies remarkable advantages in terms of profitability, productivity and efficiency in processes. Cloud computing is one of the most significant changes in information and communication technology. The developments in Cloud Computing attract business world to take advantage of this field. Cloud Computing means much more storage area, more cost saving and faster data transfer rate. In addition to these, it presents new business models, new field of study and practicable solutions for anyone’s use. These developments make inevitable the implementation of ERP systems to cloud environment. In this study, the performance of ERP systems in cloud environment is analyzed through various performance criteria and a comparison between traditional and cloud-ERP systems is presented. At the end of study the transformation and the future of ERP systems is discussed.
A Filtering Algorithm for a Nonlinear State-Space Model
Kalman filter is a famous algorithm that utilizes to estimate the state in the linear systems. It has numerous applications in technology and science. Since of the most of applications in real life can be described by nonlinear systems. So, Kalman filter does not work with the nonlinear systems because it is suitable to linear systems only. In this work, a nonlinear filtering algorithm is presented which is suitable to use with the special kinds of nonlinear systems. This filter generalizes the Kalman filter. This means that this filter also can be used for the linear systems. Our algorithm depends on a special linearization of the second degree. We introduced the nonlinear algorithm with a bilinear state-space model. A simulation example is presented to illustrate the efficiency of the algorithm.
Effect of the Aluminium Concentration on the Laser Wavelength of Random Trimer Barrier AlxGa1-xAs Superlattices
We have numerically investigated the effect of Aluminium concentration on the the laser wavelength of random trimer barrier AlxGa1-xAs superlattices (RTBSL). Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that the barriers of one kind appear in triply. An explicit formula is given for evaluating the transmission coefficient of superlattices (SL's) with intentional correlated disorder. The method is based on Airy function formalism and the transfer-matrix technique. We discuss the impact of the Aluminium concentration associate to the structure profile on the laser wavelengths.
Variability of Hydrological Modeling of the Blue Nile
The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling.
Accounting Information Systems of Kuwaiti Companies: Obstacles and Barriers
The aim of this paper is to identify and discuss the obstacles to the ability of the accounting information systems of Kuwaiti companies to deal with electronic commerce, and then to propose appropriate solutions to overcome the barriers. The study revealed a remarkable decrease in external auditors who have professional certification. The results also showed an agreement regarding the accounting systems and the ability to deal with e-commerce, with a different degree of importance, despite the presence of obstacles to the ability of accounting systems in dealing with different companies.
The Postcognitivist Era in Cognitive Psychology
During the cognitivist era in cognitive psychology, a theory of internal rules and symbolic representations was posited as an account of human cognition. This type of cognitive architecture had its heyday during the 1970s and 80s, but it has now been largely abandoned in favour of subsymbolic architectures (e.g. connectionism), non-representational frameworks (e.g. dynamical systems theory), and statistical approaches such as Bayesian theory. In this presentation I describe this changing landscape of research, and comment on the increasing influence of neuroscience on cognitive psychology. I then briefly review a few recent developments in connectionism, and neurocomputation relevant to cognitive psychology, and critically discuss the assumption made by some researchers in these frameworks that higher-level aspects of human cognition are simply emergent properties of massively large distributed neural networks
Motion of an Infinitesimal Particle in Binary Stellar Systems: Kepler-34, Kepler-35, Kepler-16, Kepler-413
The present research was motivated by the recent discovery of the binary star systems. In this paper, we use the restricted three-body problem in the binary stellar systems, considering photogravitational effects of both the stars. The aim of this study is to investigate the motion of the infinitesimal mass in the vicinity of the Lagrangian points. The stability and periodic orbits of collinear points and the stability and trajectories of the triangular points are studied in stellar binary systems Kepler-34, Kepler-35, Kepler-413 and Kepler-16 systems. A detailed comparison is made among periodic orbits and trajectories.
Topological Analyses of Unstructured Peer to Peer Systems: A Survey
Due to their different properties that have led to avoid several limitations of classic client/server systems, there has been a great interest in the development and the improvement of different peer to peer systems. Understanding the properties of complex peer to peer networks is essential for their future improvements. It was shown that the performances of peer to peer protocols are directly related to their underlying topologies. Therefore, multiple efforts have analyzed the topologies of different peer to peer systems. This study presents an overview of major findings of close experimental analyses to different topologies of three unstructured peer to peer systems: BitTorrent, Gnutella, and FreeNet.
Physical Characterization of a Watershed for Correlation with Parameters of Thomas Hydrological Model and Its Application in Iber Hidrodinamic Model
This study determined the relationship between basic geo-technical parameters and parameters of the hydro logical model Thomas for water balance of rural watersheds, as a methodological calibration application, applicable in distributed models as IBER model, which represents a distributed system simulation models for unsteady flow numerical free surface. There was an exploration in 25 points (on 15 sub) basin of Rio Piedras (Boy.) obtaining soil samples, to which geo-technical characterization was performed by laboratory tests. Thomas model has a physical characterization of the input area by only four parameters (a, b, c, d). Achieve measurable relationship between geo technical parameters and 4 values of hydro logical parameters helps to determine subsurface, underground and surface flow more agile manner. It is intended in this way to reach some solutions regarding limits initial model parameters on the basis of Thomas geo-technical characterization. In hydro geological models of rural watersheds, calibration is an important process in the characterization of the study area. This step can require a significant computational cost and time, especially if the initial values or parameters before calibration are outside of the geo-technical reality. A better approach in these initial values means optimization of these process through a geo-technical materials area, where is obtained an important approach to the study as in the starting range of variation for the calibration parameters.
Assessment of Sustainable Sanitation Systems: Urban Slums
Having an appropriate plan of sanitation systems is one of the critical issues for global urban slums. Poor sanitation systems in urban slums outcomes an enhanced vulnerability of severe diseases, low hygiene and environmental risks within our environment. Mentioning human excreta being one of the most highly risked pollutants among all the other major contributors of sanitation pollutants is increasing public health risks and amounts of pollution loads within the slum environment. Higher population growth, urge of urbanization and illegal status of urban slums makes it impossible to increase the level of performance of sanitation systems in urban slums. According to Sustainable Sanitation Alliance, design parameters for sanitation systems were set up to ensure sustainable environment. This paper reviews the characteristics of human excreta at present, treatment technologies, and procedures of processes that can be adopted feasibly in the urban slums. Keeping these factors as our significant concern of study, assessment of sustainable sanitation systems is done using sanitation chain concept in accordance to the pre-determined sustainability indicators and criteria which reflect the potential and feasible application of waterless sanitation systems bringing sustainable sanitation systems in urban slums.
Multishape Task Scheduling Algorithms for Real Time Micro-Controller Based Application
Embedded systems are usually microcontroller-based systems that represent a class of reliable and dependable dedicated computer systems designed for specific purposes. Micro-controllers are used in most electronic devices in an endless variety of ways. Some micro-controller-based embedded systems are required to respond to external events in the shortest possible time and such systems are known as real-time embedded systems. So in multitasking system there is a need of task Scheduling,there are various scheduling algorithms like Fixed priority Scheduling(FPS),Earliest deadline first(EDF), Rate Monotonic(RM), Deadline Monotonic(DM),etc have been researched. In this Report various conventional algorithms have been reviewed and analyzed, these algorithms consists of single shape task, A new Multishape scheduling algorithms has been proposed and implemented and analyzed.
Wind Resource Classification and Feasibility of Distributed Generation for Rural Community Utilization in North Central Nigeria
This study analyzed the electricity generation potential from wind at seven sites spread across seven states of the North-Central region of Nigeria. Twenty-one years (1987 to 2007) wind speed data at a height of 10m were assessed from the Nigeria Meteorological Department, Oshodi. The data were subjected to different statistical tests and also compared with the two-parameter Weibull probability density function. The outcome shows that the monthly average wind speeds ranged between 2.2 m/s in November for Bida and 10.1 m/s in December for Jos. The yearly average ranged between 2.1m/s in 1987 for Bida and 11.8 m/s in 2002 for Jos. Also, the power density for each site was determined to range between 29.66 W/m2 for Bida and 864.96 W/m2 for Jos, Two parameters (k and c) of the Weibull distribution were found to range between 2.3 in Lokoja and 6.5 in Jos for k, while c ranged between 2.9 in Bida and 9.9m/s in Jos. These outcomes points to the fact that wind speeds at Jos, Minna, Ilorin, Makurdi and Abuja are compatible with the cut-in speeds of modern wind turbines and hence, may be economically feasible for wind-to-electricity at and above the height of 10 m. The study further assessed the potential and economic viability of standalone wind generation systems for off-grid rural communities located in each of the studied sites. A specific electric load profile was developed to suite hypothetic communities, each consisting of 200 homes, a school and a community health center. Assessment of the design that will optimally meet the daily load demand with a loss of load probability (LOLP) of 0.01 was performed, considering 2 stand-alone applications of wind and diesel. The diesel standalone system (DSS) was taken as the basis of comparison since the experimental locations have no connection to a distribution network. The HOMER® software optimizing tool was utilized to determine the optimal combination of system components that will yield the lowest life cycle cost. Sequel to the analysis for rural community utilization, a Distributed Generation (DG) analysis that considered the possibility of generating wind power in the MW range in order to take advantage of Nigeria’s tariff regime for embedded generation was carried out for each site. The DG design incorporated each community of 200 homes, freely catered for and offset from the excess electrical energy generated above the minimum requirement for sales to a nearby distribution grid. Wind DG systems were found suitable and viable in producing environmentally friendly energy in terms of life cycle cost and levelised value of producing energy at Jos ($0.14/kWh), Minna ($0.12/kWh), Ilorin ($0.09/kWh), Makurdi ($0.09/kWh), and Abuja ($0.04/kWh) at a particluar turbine hub height. These outputs reveal the value retrievable from the project after breakeven point as a function of energy consumed Based on the results, the study demonstrated that including renewable energy in the rural development plan will enhance fast upgrade of the rural communities.
Optimal Planning and Design of Hybrid Energy System for Taxila University
Renewable energy resources are being realized as suitable options in hybrid energy planning for on-grid and micro grid. In this paper, operation, planning and optimal design of on-grid distributed energy resources based hybrid system are investigated. The aim is to minimize the cost of the overall energy system keeping in view the environmental emission and minimum penetration of conventional energy resources. Seven grid connected different case studies including diesel only, diesel-renewable based, and renewable based only are designed to perform economic analysis, operational planning and emission. Sensitivity analysis is implemented to investigate the impact of different parameters on the performance of energy resources.
Drying and Transport Processes in Distributed Hydrological Modelling Based on Finite Volume Schemes (Iber Model)
The drying-wet process is one of the topics to be more careful in distributed hydrological modeling using finite volume schemes as a means of solving the equations of Saint Venant. In a hydrologic and hydraulic computer model, surface flow phenomena depend mainly on the different flow accumulation and subsequent runoff generation. These accumulations are generated by routing, cell by cell, from the heights of water, which begin to appear due to the rain at each instant of time. Determine when it is considered a dry cell and when considered wet to include in the full calculation is an issue that directly affects the quantification of direct runoff or generation of flow at the end of a zone of contribution by accumulations flow generated from cells or finite volume.
Bird-Adapted Filter for Avian Species and Individual Identification Systems Improvement
One of the essential steps of avian song processing is signal filtering. Currently, the standard methods of filtering are the Mel Bank Filter or linear filter distribution. In this article, a new type of bank filter called the Bird-Adapted Filter is introduced; whereby the signal filtering is modifiable, based upon a new mathematical description of audiograms for particular bird species or order, which was named the Avian Audiogram Unified Equation. According to the method, filters may be deliberately distributed by frequency. The filters are more concentrated in bands of higher sensitivity where there is expected to be more information transmitted and vice versa. Further, it is demonstrated a comparison of various filters for automatic individual recognition of chiffchaff (Phylloscopus collybita). The average Equal Error Rate (EER) value for Linear bank filter was 16.23%, for Mel Bank Filter 18.71%, the Bird-Adapted Filter gave 14.29%, and Bird-Adapted Filter with 1/3 modification was 12.95%. This approach would be useful for practical use in automatic systems for avian species and individual identification. Since the Bird-Adapted Filter filtration is based on the measured audiograms of particular species or orders, selecting the distribution according to the avian vocalization provides the most precise filter distribution to date.
Systems Engineering Management Using Transdisciplinary Quality System Development Lifecycle Model
The successful realization of complex systems is dependent not only on the technology issues and the process for implementing them, but on the management issues as well. Managing the systems development lifecycle requires technical management. Systems engineering management is the technical management. Systems engineering management is accomplished by incorporating many activities. The three major activities are development phasing, systems engineering process and lifecycle integration. Systems engineering management activities are performed across the system development lifecycle. Due to the ever-increasing complexity of systems as well the difficulty of managing and tracking the development activities, new ways to achieve systems engineering management activities are required. This paper presents a systematic approach used as a design management tool applied across systems engineering management roles. In this approach, Transdisciplinary System Development Lifecycle (TSDL) Model has been modified and integrated with Quality Function Deployment. Hereinafter, the name of the systematic approach is the Transdisciplinary Quality System Development Lifecycle (TQSDL) Model. The QFD translates the voice of customers (VOC) into measurable technical characteristics. The modified TSDL model is based on Axiomatic Design developed by Suh which is applicable to all designs: products, processes, systems and organizations. The TQSDL model aims to provide a robust structure and systematic thinking to support the implementation of systems engineering management roles. This approach ensures that the customer requirements are fulfilled as well as satisfies all the systems engineering manager roles and activities.
Application of Customer Relationship Management Systems in Business: Challenges and Opportunities
Customer relationship management (CRM) systems in business are a reality of the contemporary business world for the last decade or so. Still, there are grey areas regarding the successful implementation and operation of CRM systems in business. This paper, through the systematic study of the CRM implementation paradigm, attempts to identify the most important challenges and opportunities that the CRM systems face in a rapidly changing business world.
Using the Semantic Web Technologies to Bring Adaptability in E-Learning Systems
The last few decades have seen a large proportion of our population bending towards e-learning technologies, starting from learning tools used in primary and elementary schools to competency based e-learning systems specifically designed for applications like finance and marketing. The huge diversity in this crowd brings about a large number of challenges for the designers of these e-learning systems, one of which is the adaptability of such systems. This paper focuses on adaptability in the learning material in an e-learning course and how artificial intelligence and the semantic web can be used as an effective tool for this purpose. The study proved that the semantic web, still a hot topic in the area of computer science can prove to be a powerful tool in designing and implementing adaptable e-learning systems.
End to End Monitoring in Oracle Fusion Middleware for Data Verification
In large enterprises multiple departments use different sort of information systems and databases according to their needs. These systems are independent and heterogeneous in nature and sharing information/data between these systems is not an easy task. The usage of middleware technologies have made data sharing between systems very easy. However, monitoring the exchange of data/information for verification purposes between target and source systems is often complex or impossible for maintenance department due to security/access privileges on target and source systems. In this paper, we are intended to present our experience of an end to end data monitoring approach at middle ware level implemented in Oracle BPEL for data verification without any help of monitoring tool.