Excellence in Research and Innovation for Humanity

Xiaojun Li

Publications

2

Publications

2
7100
Identification of Binding Proteins That Interact with BVDV E2 Protein in Bovine Trophoblast Cell
Abstract:
Bovine viral diarrhea virus (BVDV) can cause lifelong persistent infection. One reason for the phenomena is attributed to BVDV infection to placenta tissue. However the mechanisms that BVDV invades into placenta tissue remain unclear. To clarify the molecular mechanisms, we investigated the possible means that BVDV entered into bovine trophoblast cells (TPC). Yeast two-hybrid system was used to identify proteins extracted from TPC, which interact with BVDV envelope glycoprotein E2. A PGbkt7-E2 yeast expression vector and TPC cDNA library were constructed. Through two rounds of screening, three positive clones were identified. Sequencing analysis indicated that all the three positive clones encoded the same protein clathrin. Physical interaction between clathrin and BVDV E2 protein was further confirmed by coimmunoprecipitation experiments. This result suggested that the clathrin might play a critical role in the process of BVDV entry into placenta tissue and might be a novel antiviral target for preventing BVDV infection.
Keywords:
Bovine viral diarrhea virus, clathrin, glycoprotein E2, yeast two-hybrid system.
1
10007878
Experimental Research and Numerical Analysis on Sloshing Dynamics of Irregular Annular Cylindrical Water Tank
Abstract:
This study focuses on the irregular annular cylindrical water tank of nuclear island building. Water tank is one important component of passive containment cooling system (PCS). The sloshing frequency of water is much less than the structure frequency and large-amplitude sloshing occurs easily subjected to seismic loadings. It is known that the floor response spectra may be changed because of the water tank and so do the seismic response of nuclear equipment. Therefore, the sloshing dynamics of water tank should be studied before the dynamic analysis of nuclear island building. A 1/16 scaled model was designed, and the shaking table test was done. The hydrodynamic pressure time histories and variation in wave height were recorded in the test. Then, the sloshing frequencies and damping ratio are recognized. Moreover, modal analysis and time history analysis of numerical model were done based on ADINA. By comparing the sloshing frequencies and hydrodynamic pressures, the reasonableness of test method and the accuracy of numerical results are verified, and it indicates that the formulation of potential-based fluid elements (PBFE) can be used to simulate fluid-structure interaction (FSI) of nuclear island building.
Keywords:
Nuclear island building, water tank, sloshing dynamics, shaking table experiment, PBFE.