Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 74

Computer, Electrical, Automation, Control and Information Engineering

  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 74
    94
    On-line Speech Enhancement by Time-Frequency Masking under Prior Knowledge of Source Location
    Abstract:

    This paper presents the source extraction system which can extract only target signals with constraints on source localization in on-line systems. The proposed system is a kind of methods for enhancing a target signal and suppressing other interference signals. But, the performance of proposed system is superior to any other methods and the extraction of target source is comparatively complete. The method has a beamforming concept and uses an improved time-frequency (TF) mask-based BSS algorithm to separate a target signal from multiple noise sources. The target sources are assumed to be in front and test data was recorded in a reverberant room. The experimental results of the proposed method was evaluated by the PESQ score of real-recording sentences and showed a noticeable speech enhancement.

    73
    411
    Specialized Web Robot for Objectionable Web Content Classification
    Abstract:

    This paper proposes a specialized Web robot to automatically collect objectionable Web contents for use in an objectionable Web content classification system, which creates the URL database of objectionable Web contents. It aims at shortening the update period of the DB, increasing the number of URLs in the DB, and enhancing the accuracy of the information in the DB.

    72
    422
    Novel Hybrid Approaches For Real Coded Genetic Algorithm to Compute the Optimal Control of a Single Stage Hybrid Manufacturing Systems
    Abstract:

    This paper presents a novel two-phase hybrid optimization algorithm with hybrid genetic operators to solve the optimal control problem of a single stage hybrid manufacturing system. The proposed hybrid real coded genetic algorithm (HRCGA) is developed in such a way that a simple real coded GA acts as a base level search, which makes a quick decision to direct the search towards the optimal region, and a local search method is next employed to do fine tuning. The hybrid genetic operators involved in the proposed algorithm improve both the quality of the solution and convergence speed. The phase–1 uses conventional real coded genetic algorithm (RCGA), while optimisation by direct search and systematic reduction of the size of search region is employed in the phase – 2. A typical numerical example of an optimal control problem with the number of jobs varying from 10 to 50 is included to illustrate the efficacy of the proposed algorithm. Several statistical analyses are done to compare the validity of the proposed algorithm with the conventional RCGA and PSO techniques. Hypothesis t – test and analysis of variance (ANOVA) test are also carried out to validate the effectiveness of the proposed algorithm. The results clearly demonstrate that the proposed algorithm not only improves the quality but also is more efficient in converging to the optimal value faster. They can outperform the conventional real coded GA (RCGA) and the efficient particle swarm optimisation (PSO) algorithm in quality of the optimal solution and also in terms of convergence to the actual optimum value.

    71
    457
    Video Mining for Creative Rendering
    Authors:
    Abstract:

    More and more home videos are being generated with the ever growing popularity of digital cameras and camcorders. For many home videos, a photo rendering, whether capturing a moment or a scene within the video, provides a complementary representation to the video. In this paper, a video motion mining framework for creative rendering is presented. The user-s capture intent is derived by analyzing video motions, and respective metadata is generated for each capture type. The metadata can be used in a number of applications, such as creating video thumbnail, generating panorama posters, and producing slideshows of video.

    70
    882
    Resource Discovery in Web-Services Based Grids
    Abstract:

    A Web-services based grid infrastructure is evolving to be readily available in the near future. In this approach, the Web services are inherited (encapsulated or functioned) into the same existing Grid services class. In practice there is not much difference between the existing Web and grid infrastructure. Grid services emerged as stateful web services. In this paper, we present the key components of web-services based grid and also how the resource discovery is performed on web-services based grid considering resource discovery, as a critical service, to be provided by any type of grid.

    69
    909
    Task Modeling for User Interface Design: A Layered Approach
    Abstract:

    The model-based approach to user interface design relies on developing separate models that are capturing various aspects about users, tasks, application domain, presentation and dialog representations. This paper presents a task modeling approach for user interface design and aims at exploring the mappings between task, domain and presentation models. The basic idea of our approach is to identify typical configurations in task and domain models and to investigate how they relate each other. A special emphasis is put on application-specific functions and mappings between domain objects and operational task structures. In this respect, we will distinguish between three layers in the task decomposition: a functional layer, a planning layer, and an operational layer.

    68
    1690
    An Experimental Consideration of the Hybrid Architecture Based on the Situated Action Generator
    Abstract:

    The approaches to make an agent generate intelligent actions in the AI field might be roughly categorized into two ways–the classical planning and situated action system. It is well known that each system have its own strength and weakness. However, each system also has its own application field. In particular, most of situated action systems do not directly deal with the logical problem. This paper first briefly mentions the novel action generator to situatedly extract a set of actions, which is likely to help to achieve the goal at the current situation in the relaxed logical space. After performing the action set, the agent should recognize the situation for deciding the next likely action set. However, since the extracted action is an approximation of the action which helps to achieve the goal, the agent could be caught into the deadlock of the problem. This paper proposes the newly developed hybrid architecture to solve the problem, which combines the novel situated action generator with the conventional planner. The empirical result in some planning domains shows that the quality of the resultant path to the goal is mostly acceptable as well as deriving the fast response time, and suggests the correlation between the structure of problems and the organization of each system which generates the action.

    67
    1803
    New Algorithms for Finding Short Reset Sequences in Synchronizing Automata
    Authors:
    Abstract:

    Finding synchronizing sequences for the finite automata is a very important problem in many practical applications (part orienters in industry, reset problem in biocomputing theory, network issues etc). Problem of finding the shortest synchronizing sequence is NP-hard, so polynomial algorithms probably can work only as heuristic ones. In this paper we propose two versions of polynomial algorithms which work better than well-known Eppstein-s Greedy and Cycle algorithms.

    66
    1978
    A Learning Agent for Knowledge Extraction from an Active Semantic Network
    Abstract:

    This paper outlines the development of a learning retrieval agent. Task of this agent is to extract knowledge of the Active Semantic Network in respect to user-requests. Based on a reinforcement learning approach, the agent learns to interpret the user-s intention. Especially, the learning algorithm focuses on the retrieval of complex long distant relations. Increasing its learnt knowledge with every request-result-evaluation sequence, the agent enhances his capability in finding the intended information.

    65
    2366
    Automatic Visualization Pipeline Formation for Medical Datasets on Grid Computing Environment
    Abstract:

    Distance visualization of large datasets often takes the direction of remote viewing and zooming techniques of stored static images. However, the continuous increase in the size of datasets and visualization operation causes insufficient performance with traditional desktop computers. Additionally, the visualization techniques such as Isosurface depend on the available resources of the running machine and the size of datasets. Moreover, the continuous demand for powerful computing powers and continuous increase in the size of datasets results an urgent need for a grid computing infrastructure. However, some issues arise in current grid such as resources availability at the client machines which are not sufficient enough to process large datasets. On top of that, different output devices and different network bandwidth between the visualization pipeline components often result output suitable for one machine and not suitable for another. In this paper we investigate how the grid services could be used to support remote visualization of large datasets and to break the constraint of physical co-location of the resources by applying the grid computing technologies. We show our grid enabled architecture to visualize large medical datasets (circa 5 million polygons) for remote interactive visualization on modest resources clients.

    64
    2485
    Modelling and Analyzing a Hospital Procedureusing a Petri-Net Approach
    Abstract:
    Hierarchical high-level PNs (HHPNs) with time versions are a useful tool to model systems in a variety of application domains, ranging from logistics to complex workflows. This paper addresses an application domain which is receiving more and more attention: procedure that arranges the final inpatient charge in payment-s office and their management. We shall prove that Petri net based analysis is able to improve the delays during the procedure, in order that inpatient charges could be more reliable and on time.
    63
    2595
    Network Based High Performance Computing
    Abstract:

    In the past few years there is a change in the view of high performance applications and parallel computing. Initially such applications were targeted towards dedicated parallel machines. Recently trend is changing towards building meta-applications composed of several modules that exploit heterogeneous platforms and employ hybrid forms of parallelism. The aim of this paper is to propose a model of virtual parallel computing. Virtual parallel computing system provides a flexible object oriented software framework that makes it easy for programmers to write various parallel applications.

    Keywords:
    62
    2784
    A Quantitative Approach to Strategic Design of Component-Based Business Process Models
    Abstract:

    A new paradigm for software design and development models software by its business process, translates the model into a process execution language, and has it run by a supporting execution engine. This process-oriented paradigm promotes modeling of software by less technical users or business analysts as well as rapid development. Since business process models may be shared by different organizations and sometimes even by different business domains, it is interesting to apply a technique used in traditional software component technology to design reusable business processes. This paper discusses an approach to apply a technique for software component fabrication to the design of process-oriented software units, called process components. These process components result from decomposing a business process of a particular application domain into subprocesses with an aim that the process components can be reusable in different process-based software models. The approach is quantitative because the quality of process component design is measured from technical features of the process components. The approach is also strategic because the measured quality is determined against business-oriented component management goals. A software tool has been developed to measure how good a process component design is, according to the required managerial goals and comparing to other designs. We also discuss how we benefit from reusable process components.

    61
    2876
    Face Recognition using Radial Basis Function Network based on LDA
    Authors:
    Abstract:

    This paper describes a method to improve the robustness of a face recognition system based on the combination of two compensating classifiers. The face images are preprocessed by the appearance-based statistical approaches such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). LDA features of the face image are taken as the input of the Radial Basis Function Network (RBFN). The proposed approach has been tested on the ORL database. The experimental results show that the LDA+RBFN algorithm has achieved a recognition rate of 93.5%

    60
    2896
    Watermark-based Counter for Restricting Digital Audio Consumption
    Abstract:

    In this paper we introduce three watermarking methods that can be used to count the number of times that a user has played some content. The proposed methods are tested with audio content in our experimental system using the most common signal processing attacks. The test results show that the watermarking methods used enable the watermark to be extracted under the most common attacks with a low bit error rate.

    59
    2968
    Retina Based Mouse Control (RBMC)
    Abstract:
    The paper presents a novel idea to control computer mouse cursor movement with human eyes. In this paper, a working of the product has been described as to how it helps the special people share their knowledge with the world. Number of traditional techniques such as Head and Eye Movement Tracking Systems etc. exist for cursor control by making use of image processing in which light is the primary source. Electro-oculography (EOG) is a new technology to sense eye signals with which the mouse cursor can be controlled. The signals captured using sensors, are first amplified, then noise is removed and then digitized, before being transferred to PC for software interfacing.
    58
    3168
    Meta-reasoning for Multi-agent Communication of Semantic Web Information
    Abstract:

    Meta-reasoning is essential for multi-agent communication. In this paper we propose a framework of multi-agent communication in which agents employ meta-reasoning to reason with agent and ontology locations in order to communicate semantic information with other agents on the semantic web and also reason with multiple distributed ontologies. We shall argue that multi-agent communication of Semantic Web information cannot be realized without the need to reason with agent and ontology locations. This is because for an agent to be able to communicate with another agent, it must know where and how to send a message to that agent. Similarly, for an agent to be able to reason with an external semantic web ontology, it must know where and how to access to that ontology. The agent framework and its communication mechanism are formulated entirely in meta-logic.

    57
    3338
    Choosing Search Algorithms in Bayesian Optimization Algorithm
    Abstract:

    The Bayesian Optimization Algorithm (BOA) is an algorithm based on the estimation of distributions. It uses techniques from modeling data by Bayesian networks to estimating the joint distribution of promising solutions. To obtain the structure of Bayesian network, different search algorithms can be used. The key point that BOA addresses is whether the constructed Bayesian network could generate new and useful solutions (strings), which could lead the algorithm in the right direction to solve the problem. Undoubtedly, this ability is a crucial factor of the efficiency of BOA. Varied search algorithms can be used in BOA, but their performances are different. For choosing better ones, certain suitable method to present their ability difference is needed. In this paper, a greedy search algorithm and a stochastic search algorithm are used in BOA to solve certain optimization problem. A method using Kullback-Leibler (KL) Divergence to reflect their difference is described.

    56
    3369
    System of Programs for Rapid Development and Execution of Palm OS Applications
    Abstract:

    We present the development of a system of programs designed for the compilation and execution of applications for handheld computers. In introduction we describe the purpose of the project and its components. The next two paragraphs present the first two components of the project (the scanner and parser generators). Then we describe the Object Pascal compiler and the virtual machines for Windows and Palm OS. In conclusion we emphasize the ways in which the project can be extended.

    55
    3541
    A Systematic Construction of Instability Bounds in LIS Networks
    Abstract:

    In this work, we study the impact of dynamically changing link slowdowns on the stability properties of packetswitched networks under the Adversarial Queueing Theory framework. Especially, we consider the Adversarial, Quasi-Static Slowdown Queueing Theory model, where each link slowdown may take on values in the two-valued set of integers {1, D} with D > 1 which remain fixed for a long time, under a (w, p)-adversary. In this framework, we present an innovative systematic construction for the estimation of adversarial injection rate lower bounds, which, if exceeded, cause instability in networks that use the LIS (Longest-in- System) protocol for contention-resolution. In addition, we show that a network that uses the LIS protocol for contention-resolution may result in dropping its instability bound at injection rates p > 0 when the network size and the high slowdown D take large values. This is the best ever known instability lower bound for LIS networks.

    54
    3574
    Novel Approach for Wideband VNA by Sixport Principle
    Abstract:

    Paper presents simple sixport principle and its frequency bandwidth. The novel multisixport approach is presented with its possibilities, typical parameters and frequency bandwidth. Practical implementation is shown with its measurement parameters and calibration. The bandwidth circa 1:100 is obtained.

    53
    3911
    An Enhanced Artificial Neural Network for Air Temperature Prediction
    Abstract:

    The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. An improved model for temperature prediction in Georgia was developed by including information on seasonality and modifying parameters of an existing artificial neural network model. Alternative models were compared by instantiating and training multiple networks for each model. The inclusion of up to 24 hours of prior weather information and inputs reflecting the day of year were among improvements that reduced average four-hour prediction error by 0.18°C compared to the prior model. Results strongly suggest model developers should instantiate and train multiple networks with different initial weights to establish appropriate model parameters.

    52
    4108
    A Novel Dual-Purpose Image Watermarking Technique
    Abstract:
    Image watermarking has proven to be quite an efficient tool for the purpose of copyright protection and authentication over the last few years. In this paper, a novel image watermarking technique in the wavelet domain is suggested and tested. To achieve more security and robustness, the proposed techniques relies on using two nested watermarks that are embedded into the image to be watermarked. A primary watermark in form of a PN sequence is first embedded into an image (the secondary watermark) before being embedded into the host image. The technique is implemented using Daubechies mother wavelets where an arbitrary embedding factor α is introduced to improve the invisibility and robustness. The proposed technique has been applied on several gray scale images where a PSNR of about 60 dB was achieved.
    51
    4510
    A Task-Based Design Approach for Augmented Reality Systems
    Abstract:

    User interaction components of Augmented Reality (AR) systems have to be tested with users in order to find and fix usability problems as early as possible. In this paper we will report on a user-centered design approach for AR systems following the experience acquired during the design and evaluation of a software prototype for an AR-based educational platform. In this respect we will focus on the re-design of the user task based on the results from a formative usability evaluation. The basic idea of our approach is to describe task scenarios in a tabular format, to develop a task model in a task modeling environment and then to simulate the execution.

    50
    4527
    Neuro-Fuzzy System for Equalization Channel Distortion
    Abstract:

    In this paper the application of neuro-fuzzy system for equalization of channel distortion is considered. The structure and operation algorithm of neuro-fuzzy equalizer are described. The use of neuro-fuzzy equalizer in digital signal transmission allows to decrease training time of parameters and decrease the complexity of the network. The simulation of neuro-fuzzy equalizer is performed. The obtained result satisfies the efficiency of application of neurofuzzy technology in channel equalization.

    49
    4845
    Approximate Bounded Knowledge Extraction Using Type-I Fuzzy Logic
    Abstract:

    Using neural network we try to model the unknown function f for given input-output data pairs. The connection strength of each neuron is updated through learning. Repeated simulations of crisp neural network produce different values of weight factors that are directly affected by the change of different parameters. We propose the idea that for each neuron in the network, we can obtain quasi-fuzzy weight sets (QFWS) using repeated simulation of the crisp neural network. Such type of fuzzy weight functions may be applied where we have multivariate crisp input that needs to be adjusted after iterative learning, like claim amount distribution analysis. As real data is subjected to noise and uncertainty, therefore, QFWS may be helpful in the simplification of such complex problems. Secondly, these QFWS provide good initial solution for training of fuzzy neural networks with reduced computational complexity.

    48
    4895
    Genetic Algorithms with Oracle for the Traveling Salesman Problem
    Abstract:

    By introducing the concept of Oracle we propose an approach for improving the performance of genetic algorithms for large-scale asymmetric Traveling Salesman Problems. The results have shown that the proposed approach allows overcoming some traditional problems for creating efficient genetic algorithms.

    47
    5210
    Image Magnification Using Adaptive Interpolationby Pixel Level Data-Dependent Geometrical Shapes
    Abstract:
    World has entered in 21st century. The technology of computer graphics and digital cameras is prevalent. High resolution display and printer are available. Therefore high resolution images are needed in order to produce high quality display images and high quality prints. However, since high resolution images are not usually provided, there is a need to magnify the original images. One common difficulty in the previous magnification techniques is that of preserving details, i.e. edges and at the same time smoothing the data for not introducing the spurious artefacts. A definitive solution to this is still an open issue. In this paper an image magnification using adaptive interpolation by pixel level data-dependent geometrical shapes is proposed that tries to take into account information about the edges (sharp luminance variations) and smoothness of the image. It calculate threshold, classify interpolation region in the form of geometrical shapes and then assign suitable values inside interpolation region to the undefined pixels while preserving the sharp luminance variations and smoothness at the same time. The results of proposed technique has been compared qualitatively and quantitatively with five other techniques. In which the qualitative results show that the proposed method beats completely the Nearest Neighbouring (NN), bilinear(BL) and bicubic(BC) interpolation. The quantitative results are competitive and consistent with NN, BL, BC and others.
    46
    5238
    An Adaptive Fuzzy Clustering Approach for the Network Management
    Abstract:

    The Chiu-s method which generates a Takagi-Sugeno Fuzzy Inference System (FIS) is a method of fuzzy rules extraction. The rules output is a linear function of inputs. In addition, these rules are not explicit for the expert. In this paper, we develop a method which generates Mamdani FIS, where the rules output is fuzzy. The method proceeds in two steps: first, it uses the subtractive clustering principle to estimate both the number of clusters and the initial locations of a cluster centers. Each obtained cluster corresponds to a Mamdani fuzzy rule. Then, it optimizes the fuzzy model parameters by applying a genetic algorithm. This method is illustrated on a traffic network management application. We suggest also a Mamdani fuzzy rules generation method, where the expert wants to classify the output variables in some fuzzy predefined classes.

    45
    5608
    An Efficient Watermarking Method for MP3 Audio Files
    Abstract:

    In this work, we present for the first time in our perception an efficient digital watermarking scheme for mpeg audio layer 3 files that operates directly in the compressed data domain, while manipulating the time and subband/channel domain. In addition, it does not need the original signal to detect the watermark. Our scheme was implemented taking special care for the efficient usage of the two limited resources of computer systems: time and space. It offers to the industrial user the capability of watermark embedding and detection in time immediately comparable to the real music time of the original audio file that depends on the mpeg compression, while the end user/audience does not face any artifacts or delays hearing the watermarked audio file. Furthermore, it overcomes the disadvantage of algorithms operating in the PCMData domain to be vulnerable to compression/recompression attacks, as it places the watermark in the scale factors domain and not in the digitized sound audio data. The strength of our scheme, that allows it to be used with success in both authentication and copyright protection, relies on the fact that it gives to the users the enhanced capability their ownership of the audio file not to be accomplished simply by detecting the bit pattern that comprises the watermark itself, but by showing that the legal owner knows a hard to compute property of the watermark.

    44
    5930
    A Framework for Scalable Autonomous P2P Resource Discovery for the Grid Implementation
    Abstract:

    Recently, there have been considerable efforts towards the convergence between P2P and Grid computing in order to reach a solution that takes the best of both worlds by exploiting the advantages that each offers. Augmenting the peer-to-peer model to the services of the Grid promises to eliminate bottlenecks and ensure greater scalability, availability, and fault-tolerance. The Grid Information Service (GIS) directly influences quality of service for grid platforms. Most of the proposed solutions for decentralizing the GIS are based on completely flat overlays. The main contributions for this paper are: the investigation of a novel resource discovery framework for Grid implementations based on a hierarchy of structured peer-to-peer overlay networks, and introducing a discovery algorithm utilizing the proposed framework. Validation of the framework-s performance is done via simulation. Experimental results show that the proposed organization has the advantage of being scalable while providing fault-isolation, effective bandwidth utilization, and hierarchical access control. In addition, it will lead to a reliable, guaranteed sub-linear search which returns results within a bounded interval of time and with a smaller amount of generated traffic within each domain.

    43
    6095
    Testing Visual Abilities of Machines - Visual Intelligence Tests
    Abstract:

    Intelligence tests are series of tasks designed to measure the capacity to make abstractions, to learn, and to deal with novel situations. Testing of the visual abilities of the shape understanding system (SUS) is performed based on the visual intelligence tests. In this paper the progressive matrices tests are formulated as tasks given to SUS. These tests require good visual problem solving abilities of the human subject. SUS solves these tests by performing complex visual reasoning transforming the visual forms (tests) into the string forms. The experiment proved that the proposed method, which is part of the SUS visual understanding abilities, can solve a test that is very difficult for human subject.

    42
    6119
    A Robust Method for Encrypted Data Hiding Technique Based on Neighborhood Pixels Information
    Abstract:

    This paper presents a novel method for data hiding based on neighborhood pixels information to calculate the number of bits that can be used for substitution and modified Least Significant Bits technique for data embedding. The modified solution is independent of the nature of the data to be hidden and gives correct results along with un-noticeable image degradation. The technique, to find the number of bits that can be used for data hiding, uses the green component of the image as it is less sensitive to human eye and thus it is totally impossible for human eye to predict whether the image is encrypted or not. The application further encrypts the data using a custom designed algorithm before embedding bits into image for further security. The overall process consists of three main modules namely embedding, encryption and extraction cm.

    41
    6714
    Optimal Image Compression Based on Sign and Magnitude Coding of Wavelet Coefficients
    Abstract:

    Wavelet transforms is a very powerful tools for image compression. One of its advantage is the provision of both spatial and frequency localization of image energy. However, wavelet transform coefficients are defined by both a magnitude and sign. While algorithms exist for efficiently coding the magnitude of the transform coefficients, they are not efficient for the coding of their sign. It is generally assumed that there is no compression gain to be obtained from the coding of the sign. Only recently have some authors begun to investigate the sign of wavelet coefficients in image coding. Some authors have assumed that the sign information bit of wavelet coefficients may be encoded with the estimated probability of 0.5; the same assumption concerns the refinement information bit. In this paper, we propose a new method for Separate Sign Coding (SSC) of wavelet image coefficients. The sign and the magnitude of wavelet image coefficients are examined to obtain their online probabilities. We use the scalar quantization in which the information of the wavelet coefficient to belong to the lower or to the upper sub-interval in the uncertainly interval is also examined. We show that the sign information and the refinement information may be encoded by the probability of approximately 0.5 only after about five bit planes. Two maps are separately entropy encoded: the sign map and the magnitude map. The refinement information of the wavelet coefficient to belong to the lower or to the upper sub-interval in the uncertainly interval is also entropy encoded. An algorithm is developed and simulations are performed on three standard images in grey scale: Lena, Barbara and Cameraman. Five scales are performed using the biorthogonal wavelet transform 9/7 filter bank. The obtained results are compared to JPEG2000 standard in terms of peak signal to noise ration (PSNR) for the three images and in terms of subjective quality (visual quality). It is shown that the proposed method outperforms the JPEG2000. The proposed method is also compared to other codec in the literature. It is shown that the proposed method is very successful and shows its performance in term of PSNR.

    40
    6758
    An Edge-based Text Region Extraction Algorithm for Indoor Mobile Robot Navigation
    Abstract:

    Using bottom-up image processing algorithms to predict human eye fixations and extract the relevant embedded information in images has been widely applied in the design of active machine vision systems. Scene text is an important feature to be extracted, especially in vision-based mobile robot navigation as many potential landmarks such as nameplates and information signs contain text. This paper proposes an edge-based text region extraction algorithm, which is robust with respect to font sizes, styles, color/intensity, orientations, and effects of illumination, reflections, shadows, perspective distortion, and the complexity of image backgrounds. Performance of the proposed algorithm is compared against a number of widely used text localization algorithms and the results show that this method can quickly and effectively localize and extract text regions from real scenes and can be used in mobile robot navigation under an indoor environment to detect text based landmarks.

    39
    7125
    Automatic Clustering of Gene Ontology by Genetic Algorithm
    Abstract:

    Nowadays, Gene Ontology has been used widely by many researchers for biological data mining and information retrieval, integration of biological databases, finding genes, and incorporating knowledge in the Gene Ontology for gene clustering. However, the increase in size of the Gene Ontology has caused problems in maintaining and processing them. One way to obtain their accessibility is by clustering them into fragmented groups. Clustering the Gene Ontology is a difficult combinatorial problem and can be modeled as a graph partitioning problem. Additionally, deciding the number k of clusters to use is not easily perceived and is a hard algorithmic problem. Therefore, an approach for solving the automatic clustering of the Gene Ontology is proposed by incorporating cohesion-and-coupling metric into a hybrid algorithm consisting of a genetic algorithm and a split-and-merge algorithm. Experimental results and an example of modularized Gene Ontology in RDF/XML format are given to illustrate the effectiveness of the algorithm.

    38
    7407
    A Robust LS-SVM Regression
    Abstract:
    In comparison to the original SVM, which involves a quadratic programming task; LS–SVM simplifies the required computation, but unfortunately the sparseness of standard SVM is lost. Another problem is that LS-SVM is only optimal if the training samples are corrupted by Gaussian noise. In Least Squares SVM (LS–SVM), the nonlinear solution is obtained, by first mapping the input vector to a high dimensional kernel space in a nonlinear fashion, where the solution is calculated from a linear equation set. In this paper a geometric view of the kernel space is introduced, which enables us to develop a new formulation to achieve a sparse and robust estimate.
    37
    7741
    A Quantum-Inspired Evolutionary Algorithm forMultiobjective Image Segmentation
    Abstract:
    In this paper we present a new approach to deal with image segmentation. The fact that a single segmentation result do not generally allow a higher level process to take into account all the elements included in the image has motivated the consideration of image segmentation as a multiobjective optimization problem. The proposed algorithm adopts a split/merge strategy that uses the result of the k-means algorithm as input for a quantum evolutionary algorithm to establish a set of non-dominated solutions. The evaluation is made simultaneously according to two distinct features: intra-region homogeneity and inter-region heterogeneity. The experimentation of the new approach on natural images has proved its efficiency and usefulness.
    36
    8034
    Application of the Virtual Reality Modeling Language for Design of Automated Workplaces
    Abstract:

    Virtual Reality Modelling Language (VRML) is description language, which belongs to a field Window on World virtual reality system. The file, which is in VRML format, can be interpreted by VRML explorer in three-dimensional scene. VRML was created with aim to represent virtual reality on Internet easier. Development of 3D graphic is connected with Silicon Graphic Corporation. VRML 2.0 is the file format for describing interactive 3D scenes and objects. It can be used in collaboration with www, can be used for 3D complex representations creating of scenes, products or VR applications VRML 2.0 enables represent static and animated objects too. Interesting application of VRML is in area of manufacturing systems presentation.

    35
    8147
    Mining of Interesting Prediction Rules with Uniform Two-Level Genetic Algorithm
    Abstract:

    The main goal of data mining is to extract accurate, comprehensible and interesting knowledge from databases that may be considered as large search spaces. In this paper, a new, efficient type of Genetic Algorithm (GA) called uniform two-level GA is proposed as a search strategy to discover truly interesting, high-level prediction rules, a difficult problem and relatively little researched, rather than discovering classification knowledge as usual in the literatures. The proposed method uses the advantage of uniform population method and addresses the task of generalized rule induction that can be regarded as a generalization of the task of classification. Although the task of generalized rule induction requires a lot of computations, which is usually not satisfied with the normal algorithms, it was demonstrated that this method increased the performance of GAs and rapidly found interesting rules.

    34
    8392
    A Novel Metric for Performance Evaluation of Image Fusion Algorithms
    Abstract:

    In this paper, we present a novel objective nonreference performance assessment algorithm for image fusion. It takes into account local measurements to estimate how well the important information in the source images is represented by the fused image. The metric is based on the Universal Image Quality Index and uses the similarity between blocks of pixels in the input images and the fused image as the weighting factors for the metrics. Experimental results confirm that the values of the proposed metrics correlate well with the subjective quality of the fused images, giving a significant improvement over standard measures based on mean squared error and mutual information.

    33
    8429
    A Web Oriented Watermarking Protocol
    Abstract:
    This paper presents a watermarking protocol able to solve the well-known “customer-s right problem" and “unbinding problem". In particular, the protocol has been purposely designed to be adopted in a web context, where users wanting to buy digital contents are usually neither provided with digital certificates issued by certification authorities (CAs) nor able to autonomously perform specific security actions. Furthermore, the protocol enables users to keep their identities unexposed during web transactions as well as allows guilty buyers, i.e. who are responsible distributors of illegal replicas, to be unambiguously identified. Finally, the protocol has been designed so that web content providers (CPs) can exploit copyright protection services supplied by web service providers (SPs) in a security context. Thus, CPs can take advantage of complex services without having to directly implement them.
    32
    8510
    Two Approaches to Code Mobility in an Agent-based E-commerce System
    Abstract:

    Recently, a model multi-agent e-commerce system based on mobile buyer agents and transfer of strategy modules was proposed. In this paper a different approach to code mobility is introduced, where agent mobility is replaced by local agent creation supplemented by similar code mobility as in the original proposal. UML diagrams of agents involved in the new approach to mobility and the augmented system activity diagram are presented and discussed.

    31
    9090
    Tracking Activity of Real Individuals in Web Logs
    Abstract:
    This paper describes an enhanced cookie-based method for counting the visitors of web sites by using a web log processing system that aims to cope with the ambitious goal of creating countrywide statistics about the browsing practices of real human individuals. The focus is put on describing a new more efficient way of detecting human beings behind web users by placing different identifiers on the client computers. We briefly introduce our processing system designed to handle the massive amount of data records continuously gathered from the most important content providers of the Hungary. We conclude by showing statistics of different time spans comparing the efficiency of multiple visitor counting methods to the one presented here, and some interesting charts about content providers and web usage based on real data recorded in 2007 will also be presented.
    30
    9354
    Implementing Authentication Protocol for Exchanging Encrypted Messages via an Authentication Server Based on Elliptic Curve Cryptography with the ElGamal-s Algorithm
    Abstract:

    In this paper the authors propose a protocol, which uses Elliptic Curve Cryptography (ECC) based on the ElGamal-s algorithm, for sending small amounts of data via an authentication server. The innovation of this approach is that there is no need for a symmetric algorithm or a safe communication channel such as SSL. The reason that ECC has been chosen instead of RSA is that it provides a methodology for obtaining high-speed implementations of authentication protocols and encrypted mail techniques while using fewer bits for the keys. This means that ECC systems require smaller chip size and less power consumption. The proposed protocol has been implemented in Java to analyse its features and vulnerabilities in the real world.

    29
    9895
    An Intelligent Human-Computer Interaction System for Decision Support
    Abstract:

    This paper proposes a novel architecture for developing decision support systems. Unlike conventional decision support systems, the proposed architecture endeavors to reveal the decision-making process such that humans' subjectivity can be incorporated into a computerized system and, at the same time, to preserve the capability of the computerized system in processing information objectively. A number of techniques used in developing the decision support system are elaborated to make the decisionmarking process transparent. These include procedures for high dimensional data visualization, pattern classification, prediction, and evolutionary computational search. An artificial data set is first employed to compare the proposed approach with other methods. A simulated handwritten data set and a real data set on liver disease diagnosis are then employed to evaluate the efficacy of the proposed approach. The results are analyzed and discussed. The potentials of the proposed architecture as a useful decision support system are demonstrated.

    28
    9948
    A File Splitting Technique for Reducing the Entropy of Text Files
    Abstract:

    A novel file splitting technique for the reduction of the nth-order entropy of text files is proposed. The technique is based on mapping the original text file into a non-ASCII binary file using a new codeword assignment method and then the resulting binary file is split into several subfiles each contains one or more bits from each codeword of the mapped binary file. The statistical properties of the subfiles are studied and it is found that they reflect the statistical properties of the original text file which is not the case when the ASCII code is used as a mapper. The nth-order entropy of these subfiles are determined and it is found that the sum of their entropies is less than that of the original text file for the same values of extensions. These interesting statistical properties of the resulting subfiles can be used to achieve better compression ratios when conventional compression techniques are applied to these subfiles individually and on a bit-wise basis rather than on character-wise basis.

    27
    10185
    A Phenomic Algorithm for Reconstruction of Gene Networks
    Abstract:

    The goal of Gene Expression Analysis is to understand the processes that underlie the regulatory networks and pathways controlling inter-cellular and intra-cellular activities. In recent times microarray datasets are extensively used for this purpose. The scope of such analysis has broadened in recent times towards reconstruction of gene networks and other holistic approaches of Systems Biology. Evolutionary methods are proving to be successful in such problems and a number of such methods have been proposed. However all these methods are based on processing of genotypic information. Towards this end, there is a need to develop evolutionary methods that address phenotypic interactions together with genotypic interactions. We present a novel evolutionary approach, called Phenomic algorithm, wherein the focus is on phenotypic interaction. We use the expression profiles of genes to model the interactions between them at the phenotypic level. We apply this algorithm to the yeast sporulation dataset and show that the algorithm can identify gene networks with relative ease.

    26
    10540
    Issues and Architecture for Supporting Data Warehouse Queries in Web Portals
    Abstract:

    Data Warehousing tools have become very popular and currently many of them have moved to Web-based user interfaces to make it easier to access and use the tools. The next step is to enable these tools to be used within a portal framework. The portal framework consists of pages having several small windows that contain individual data warehouse query results. There are several issues that need to be considered when designing the architecture for a portal enabled data warehouse query tool. Some issues need special techniques that can overcome the limitations that are imposed by the nature of data warehouse queries. Issues such as single sign-on, query result caching and sharing, customization, scheduling and authorization need to be considered. This paper discusses such issues and suggests an architecture to support data warehouse queries within Web portal frameworks.

    25
    10554
    The Rank-scaled Mutation Rate for Genetic Algorithms
    Abstract:

    A novel method of individual level adaptive mutation rate control called the rank-scaled mutation rate for genetic algorithms is introduced. The rank-scaled mutation rate controlled genetic algorithm varies the mutation parameters based on the rank of each individual within the population. Thereby the distribution of the fitness of the papulation is taken into consideration in forming the new mutation rates. The best fit mutate at the lowest rate and the least fit mutate at the highest rate. The complexity of the algorithm is of the order of an individual adaptation scheme and is lower than that of a self-adaptation scheme. The proposed algorithm is tested on two common problems, namely, numerical optimization of a function and the traveling salesman problem. The results show that the proposed algorithm outperforms both the fixed and deterministic mutation rate schemes. It is best suited for problems with several local optimum solutions without a high demand for excessive mutation rates.

    24
    10650
    Post Mining- Discovering Valid Rules from Different Sized Data Sources
    Abstract:

    A big organization may have multiple branches spread across different locations. Processing of data from these branches becomes a huge task when innumerable transactions take place. Also, branches may be reluctant to forward their data for centralized processing but are ready to pass their association rules. Local mining may also generate a large amount of rules. Further, it is not practically possible for all local data sources to be of the same size. A model is proposed for discovering valid rules from different sized data sources where the valid rules are high weighted rules. These rules can be obtained from the high frequency rules generated from each of the data sources. A data source selection procedure is considered in order to efficiently synthesize rules. Support Equalization is another method proposed which focuses on eliminating low frequency rules at the local sites itself thus reducing the rules by a significant amount.

    23
    11151
    Predicting the Three Major Dimensions of the Learner-s Emotions from Brainwaves
    Abstract:

    This paper investigates how the use of machine learning techniques can significantly predict the three major dimensions of learner-s emotions (pleasure, arousal and dominance) from brainwaves. This study has adopted an experimentation in which participants were exposed to a set of pictures from the International Affective Picture System (IAPS) while their electrical brain activity was recorded with an electroencephalogram (EEG). The pictures were already rated in a previous study via the affective rating system Self-Assessment Manikin (SAM) to assess the three dimensions of pleasure, arousal, and dominance. For each picture, we took the mean of these values for all subjects used in this previous study and associated them to the recorded brainwaves of the participants in our study. Correlation and regression analyses confirmed the hypothesis that brainwave measures could significantly predict emotional dimensions. This can be very useful in the case of impassive, taciturn or disabled learners. Standard classification techniques were used to assess the reliability of the automatic detection of learners- three major dimensions from the brainwaves. We discuss the results and the pertinence of such a method to assess learner-s emotions and integrate it into a brainwavesensing Intelligent Tutoring System.

    22
    11865
    A Study of the Effectiveness of the Routing Decision Support Algorithm
    Abstract:

    Multi criteria decision making (MCDM) methods like analytic hierarchy process, ELECTRE and multi-attribute utility theory are critically studied. They have irregularities in terms of the reliability of ranking of the best alternatives. The Routing Decision Support (RDS) algorithm is trying to improve some of their deficiencies. This paper gives a mathematical verification that the RDS algorithm conforms to the test criteria for an effective MCDM method when a linear preference function is considered.

    21
    12263
    Personalisation of SOA Registry Query Results: Implementation, Performance Analysis and Scalability Evaluation
    Abstract:

    Service discovery is a very important component of Service Oriented Architectures (SOA). This paper presents two alternative approaches to customise the query results of private service registry such as Universal Description, Discovery and Integration (UDDI). The customisation is performed based on some pre-defined and/or real-time changing parameters. This work identifies the requirements, designs and additional mechanisms that must be applied to UDDI in order to support this customisation capability. We also detail the implements of the approaches and examine its performance and scalability. Based on our experimental results, we conclude that both approaches can be used to customise registry query results, but by storing personalization parameters in external resource will yield better performance and but less scalable when size of query results increases. We believe these approaches when combined with semantics enabled service registry will enhance the service discovery methods within a private UDDI registry environment.

    20
    12314
    A Comparative Study of Web-pages Classification Methods using Fuzzy Operators Applied to Arabic Web-pages
    Abstract:

    In this study, a fuzzy similarity approach for Arabic web pages classification is presented. The approach uses a fuzzy term-category relation by manipulating membership degree for the training data and the degree value for a test web page. Six measures are used and compared in this study. These measures include: Einstein, Algebraic, Hamacher, MinMax, Special case fuzzy and Bounded Difference approaches. These measures are applied and compared using 50 different Arabic web-pages. Einstein measure was gave best performance among the other measures. An analysis of these measures and concluding remarks are drawn in this study.

    19
    12316
    Requirements Driven Multiple View Paradigm for Developing Security Architecture
    Abstract:

    This paper describes a paradigmatic approach to develop architecture of secure systems by describing the requirements from four different points of view: that of the owner, the administrator, the user, and the network. Deriving requirements and developing architecture implies the joint elicitation and describing the problem and the structure of the solution. The view points proposed in this paper are those we consider as requirements towards their contributions as major parties in the design, implementation, usage and maintenance of secure systems. The dramatic growth of the technology of Internet and the applications deployed in World Wide Web have lead to the situation where the security has become a very important concern in the development of secure systems. Many security approaches are currently being used in organizations. In spite of the widespread use of many different security solutions, the security remains a problem. It is argued that the approach that is described in this paper for the development of secure architecture is practical by all means. The models representing these multiple points of view are termed the requirements model (views of owner and administrator) and the operations model (views of user and network). In this paper, this multiple view paradigm is explained by first describing the specific requirements and or characteristics of secure systems (particularly in the domain of networks) and the secure architecture / system development methodology.

    18
    12471
    A Cheating Model for Cellular Automata-Based Secret Sharing Schemes
    Abstract:

    Cellular automata have been used for design of cryptosystems. Recently some secret sharing schemes based on linear memory cellular automata have been introduced which are used for both text and image. In this paper, we illustrate that these secret sharing schemes are vulnerable to dishonest participants- collusion. We propose a cheating model for the secret sharing schemes based on linear memory cellular automata. For this purpose we present a novel uniform model for representation of all secret sharing schemes based on cellular automata. Participants can cheat by means of sending bogus shares or bogus transition rules. Cheaters can cooperate to corrupt a shared secret and compute a cheating value added to it. Honest participants are not aware of cheating and suppose the incorrect secret as the valid one. We prove that cheaters can recover valid secret by removing the cheating value form the corrupted secret. We provide methods of calculating the cheating value.

    17
    12912
    Database Compression for Intelligent On-board Vehicle Controllers
    Abstract:

    The vehicle fleet of public transportation companies is often equipped with intelligent on-board passenger information systems. A frequently used but time and labor-intensive way for keeping the on-board controllers up-to-date is the manual update using different memory cards (e.g. flash cards) or portable computers. This paper describes a compression algorithm that enables data transmission using low bandwidth wireless radio networks (e.g. GPRS) by minimizing the amount of data traffic. In typical cases it reaches a compression rate of an order of magnitude better than that of the general purpose compressors. Compressed data can be easily expanded by the low-performance controllers, too.

    16
    12939
    Image Thresholding for Weld Defect Extraction in Industrial Radiographic Testing
    Abstract:

    In non destructive testing by radiography, a perfect knowledge of the weld defect shape is an essential step to appreciate the quality of the weld and make decision on its acceptability or rejection. Because of the complex nature of the considered images, and in order that the detected defect region represents the most accurately possible the real defect, the choice of thresholding methods must be done judiciously. In this paper, performance criteria are used to conduct a comparative study of thresholding methods based on gray level histogram, 2-D histogram and locally adaptive approach for weld defect extraction in radiographic images.

    15
    13001
    Effective Features for Disambiguation of Turkish Verbs
    Abstract:

    This paper summarizes the results of some experiments for finding the effective features for disambiguation of Turkish verbs. Word sense disambiguation is a current area of investigation in which verbs have the dominant role. Generally verbs have more senses than the other types of words in the average and detecting these features for verbs may lead to some improvements for other word types. In this paper we have considered only the syntactical features that can be obtained from the corpus and tested by using some famous machine learning algorithms.

    14
    13075
    An Extension of Multi-Layer Perceptron Based on Layer-Topology
    Authors:
    Abstract:

    There are a lot of extensions made to the classic model of multi-layer perceptron (MLP). A notable amount of them has been designed to hasten the learning process without considering the quality of generalization. The paper proposes a new MLP extension based on exploiting topology of the input layer of the network. Experimental results show the extended model to improve upon generalization capability in certain cases. The new model requires additional computational resources to compare to the classic model, nevertheless the loss in efficiency isn-t regarded to be significant.

    13
    13410
    Intrusion Detection based on Distance Combination
    Abstract:

    The intrusion detection problem has been frequently studied, but intrusion detection methods are often based on a single point of view, which always limits the results. In this paper, we introduce a new intrusion detection model based on the combination of different current methods. First we use a notion of distance to unify the different methods. Second we combine these methods using the Pearson correlation coefficients, which measure the relationship between two methods, and we obtain a combined distance. If the combined distance is greater than a predetermined threshold, an intrusion is detected. We have implemented and tested the combination model with two different public data sets: the data set of masquerade detection collected by Schonlau & al., and the data set of program behaviors from the University of New Mexico. The results of the experiments prove that the combination model has better performances.

    12
    14074
    Determining Senses for Word Sense Disambiguation in Turkish
    Abstract:

    Word sense disambiguation is an important intermediate stage for many natural language processing applications. The senses of an ambiguous word are the classification of usages for that specific word. This paper deals with the methodologies of determining the senses for a given word if they can not be obtained from an already available resource like WordNet. We offer a method that helps us to determine the sense boundaries gradually. In this method, first we decide on some features that are thought to be effective on the senses and divide the instances first into two, then according to the results of evaluations we continue dividing instances gradually. In a second method we use the pseudo words. We devise artificial words depending on some criteria and evaluate classification algorithms on these previously classified words.

    11
    14530
    A Wavelet-Based Watermarking Method Exploiting the Contrast Sensitivity Function
    Abstract:

    The efficiency of an image watermarking technique depends on the preservation of visually significant information. This is attained by embedding the watermark transparently with the maximum possible strength. The current paper presents an approach for still image digital watermarking in which the watermark embedding process employs the wavelet transform and incorporates Human Visual System (HVS) characteristics. The sensitivity of a human observer to contrast with respect to spatial frequency is described by the Contrast Sensitivity Function (CSF). The strength of the watermark within the decomposition subbands, which occupy an interval on the spatial frequencies, is adjusted according to this sensitivity. Moreover, the watermark embedding process is carried over the subband coefficients that lie on edges where distortions are less noticeable. The experimental evaluation of the proposed method shows very good results in terms of robustness and transparency.

    10
    14595
    A Novel Neighborhood Defined Feature Selection on Phase Congruency Images for Recognition of Faces with Extreme Variations
    Abstract:

    A novel feature selection strategy to improve the recognition accuracy on the faces that are affected due to nonuniform illumination, partial occlusions and varying expressions is proposed in this paper. This technique is applicable especially in scenarios where the possibility of obtaining a reliable intra-class probability distribution is minimal due to fewer numbers of training samples. Phase congruency features in an image are defined as the points where the Fourier components of that image are maximally inphase. These features are invariant to brightness and contrast of the image under consideration. This property allows to achieve the goal of lighting invariant face recognition. Phase congruency maps of the training samples are generated and a novel modular feature selection strategy is implemented. Smaller sub regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are arranged in the order of increasing distance between the sub regions involved in merging. The assumption behind the proposed implementation of the region merging and arrangement strategy is that, local dependencies among the pixels are more important than global dependencies. The obtained feature sets are then arranged in the decreasing order of discriminating capability using a criterion function, which is the ratio of the between class variance to the within class variance of the sample set, in the PCA domain. The results indicate high improvement in the classification performance compared to baseline algorithms.

    9
    14613
    New Proxy Signatures Preserving Privacy and as Secure as ElGamal Signatures
    Abstract:

    Digital signature is a useful primitive to attain the integrity and authenticity in various wire or wireless communications. Proxy signature is one type of the digital signatures. It helps the proxy signer to sign messages on behalf of the original signer. It is very useful when the original signer (e.g. the president of a company) is not available to sign a specific document. If the original signer can not forge valid proxy signatures through impersonating the proxy signer, it will be robust in a virtual environment; thus the original signer can not shift any illegal action initiated by herself to the proxy signer. In this paper, we propose a new proxy signature scheme. The new scheme can prevent the original signer from impersonating the proxy signer to sign messages. The proposed scheme is based on the regular ElGamal signature. In addition, the fair privacy of the proxy signer is maintained. That means, the privacy of the proxy signer is preserved; and the privacy can be revealed when it is necessary.

    8
    14780
    Syntactic Recognition of Distorted Patterns
    Abstract:
    In syntactic pattern recognition a pattern can be represented by a graph. Given an unknown pattern represented by a graph g, the problem of recognition is to determine if the graph g belongs to a language L(G) generated by a graph grammar G. The so-called IE graphs have been defined in [1] for a description of patterns. The IE graphs are generated by so-called ETPL(k) graph grammars defined in [1]. An efficient, parsing algorithm for ETPL(k) graph grammars for syntactic recognition of patterns represented by IE graphs has been presented in [1]. In practice, structural descriptions may contain pattern distortions, so that the assignment of a graph g, representing an unknown pattern, to a graph language L(G) generated by an ETPL(k) graph grammar G is rejected by the ETPL(k) type parsing. Therefore, there is a need for constructing effective parsing algorithms for recognition of distorted patterns. The purpose of this paper is to present a new approach to syntactic recognition of distorted patterns. To take into account all variations of a distorted pattern under study, a probabilistic description of the pattern is needed. A random IE graph approach is proposed here for such a description ([2]).
    7
    14781
    Research on the Relevance Feedback-based Image Retrieval in Digital Library
    Abstract:

    In recent years, the relevance feedback technology is regarded in content-based image retrieval. This paper suggests a neural networks feedback algorithm based on the radial basis function, coming to extract the semantic character of image. The results of experiment indicated that the performance of this relevance feedback is better than the feedback algorithm based on Single-RBF.

    6
    14982
    Highlighting Document's Structure
    Abstract:

    In this paper, we present symbolic recognition models to extract knowledge characterized by document structures. Focussing on the extraction and the meticulous exploitation of the semantic structure of documents, we obtain a meaningful contextual tagging corresponding to different unit types (title, chapter, section, enumeration, etc.).

    5
    15252
    Genetic Programming Based Data Projections for Classification Tasks
    Abstract:

    In this paper we present a GP-based method for automatically evolve projections, so that data can be more easily classified in the projected spaces. At the same time, our approach can reduce dimensionality by constructing more relevant attributes. Fitness of each projection measures how easy is to classify the dataset after applying the projection. This is quickly computed by a Simple Linear Perceptron. We have tested our approach in three domains. The experiments show that it obtains good results, compared to other Machine Learning approaches, while reducing dimensionality in many cases.

    4
    15655
    Wavelet-Based Despeckling of Synthetic Aperture Radar Images Using Adaptive and Mean Filters
    Abstract:

    In this paper we introduced new wavelet based algorithm for speckle reduction of synthetic aperture radar images, which uses combination of undecimated wavelet transformation, wiener filter (which is an adaptive filter) and mean filter. Further more instead of using existing thresholding techniques such as sure shrinkage, Bayesian shrinkage, universal thresholding, normal thresholding, visu thresholding, soft and hard thresholding, we use brute force thresholding, which iteratively run the whole algorithm for each possible candidate value of threshold and saves each result in array and finally selects the value for threshold that gives best possible results. That is why it is slow as compared to existing thresholding techniques but gives best results under the given algorithm for speckle reduction.

    3
    15671
    Integrating Low and High Level Object Recognition Steps by Probabilistic Networks
    Abstract:

    In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.

    2
    15764
    Recurrent Neural Network Based Fuzzy Inference System for Identification and Control of Dynamic Plants
    Abstract:

    This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The neuro-fuzzy system is used for the identification and control of nonlinear dynamic plant. The simulation results of identification and control systems based on recurrent neuro-fuzzy network are compared with the simulation results of other neural systems. It is found that the recurrent neuro-fuzzy based system has better performance than the others.

    1
    15961
    Coloured Reconfigurable Nets for Code Mobility Modeling
    Abstract:

    Code mobility technologies attract more and more developers and consumers. Numerous domains are concerned, many platforms are developed and interest applications are realized. However, developing good software products requires modeling, analyzing and proving steps. The choice of models and modeling languages is so critical on these steps. Formal tools are powerful in analyzing and proving steps. However, poorness of classical modeling language to model mobility requires proposition of new models. The objective of this paper is to provide a specific formalism “Coloured Reconfigurable Nets" and to show how this one seems to be adequate to model different kinds of code mobility.