Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 25

Computer, Electrical, Automation, Control and Information Engineering

  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 25
    Throughput Enhancement in AUDTWMN Using Throwboxes – An Overview
    Delay and Disruption Tolerant Networking is part of the Inter Planetary Internet with primary application being Deep Space Networks. Its Terrestrial form has interesting research applications such as Alagappa University Delay Tolerant Water Monitoring Network which doubles as test beds for improvising its routing scheme. DTNs depend on node mobility to deliver packets using a store-carry-and forward paradigm. Throwboxes are small and inexpensive stationary devices equipped with wireless interfaces and storage. We propose the use of Throwboxes to enhance the contact opportunities of the nodes and hence improve the Throughput. The enhancement is evaluated using Alunivdtnsim, a desktop simulator in C language and the results are graphically presented.
    Routing Algorithm for a Clustered Network

    The Cluster Dimension of a network is defined as, which is the minimum cardinality of a subset S of the set of nodes having the property that for any two distinct nodes x and y, there exist the node Si, s2 (need not be distinct) in S such that ld(x,s1) — d(y, s1)1 > 1 and d(x,s2) < d(x,$) for all s E S — {s2}. In this paper, strictly non overlap¬ping clusters are constructed. The concept of LandMarks for Unique Addressing and Clustering (LMUAC) routing scheme is developed. With the help of LMUAC routing scheme, It is shown that path length (upper bound)PLN,d < PLD, Maximum memory space requirement for the networkMSLmuAc(Az) < MSEmuAc < MSH3L < MSric and Maximum Link utilization factor MLLMUAC(i=3) < MLLMUAC(z03) < M Lc

    Performance Comparison between Sliding Mode Control (SMC) and PD-PID Controllers for a Nonlinear Inverted Pendulum System
    The objective of this paper is to compare the time specification performance between conventional controller PID and modern controller SMC for an inverted pendulum system. The goal is to determine which control strategy delivers better performance with respect to pendulum-s angle and cart-s position. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. Two controllers are presented such as Sliding Mode Control (SMC) and Proportional- Integral-Derivatives (PID) controllers for controlling the highly nonlinear system of inverted pendulum model. Simulation study has been done in Matlab Mfile and simulink environment shows that both controllers are capable to control multi output inverted pendulum system successfully. The result shows that Sliding Mode Control (SMC) produced better response compared to PID control strategies and the responses are presented in time domain with the details analysis.
    Application and Limitation of Parallel Modelingin Multidimensional Sequential Pattern
    The goal of data mining algorithms is to discover useful information embedded in large databases. One of the most important data mining problems is discovery of frequently occurring patterns in sequential data. In a multidimensional sequence each event depends on more than one dimension. The search space is quite large and the serial algorithms are not scalable for very large datasets. To address this, it is necessary to study scalable parallel implementations of sequence mining algorithms. In this paper, we present a model for multidimensional sequence and describe a parallel algorithm based on data parallelism. Simulation experiments show good load balancing and scalable and acceptable speedup over different processors and problem sizes and demonstrate that our approach can works efficiently in a real parallel computing environment.
    Design of Nonlinear Observer by Using Chebyshev Interpolation based on Formal Linearization
    This paper discusses a design of nonlinear observer by a formal linearization method using an application of Chebyshev Interpolation in order to facilitate processes for synthesizing a nonlinear observer and to improve the precision of linearization. A dynamic nonlinear system is linearized with respect to a linearization function, and a measurement equation is transformed into an augmented linear one by the formal linearization method which is based on Chebyshev interpolation. To the linearized system, a linear estimation theory is applied and a nonlinear observer is derived. To show effectiveness of the observer design, numerical experiments are illustrated and they indicate that the design shows remarkable performances for nonlinear systems.
    3D Network-on-Chip with on-Chip DRAM: An Empirical Analysis for Future Chip Multiprocessor

    With the increasing number of on-chip components and the critical requirement for processing power, Chip Multiprocessor (CMP) has gained wide acceptance in both academia and industry during the last decade. However, the conventional bus-based onchip communication schemes suffer from very high communication delay and low scalability in large scale systems. Network-on-Chip (NoC) has been proposed to solve the bottleneck of parallel onchip communications by applying different network topologies which separate the communication phase from the computation phase. Observing that the memory bandwidth of the communication between on-chip components and off-chip memory has become a critical problem even in NoC based systems, in this paper, we propose a novel 3D NoC with on-chip Dynamic Random Access Memory (DRAM) in which different layers are dedicated to different functionalities such as processors, cache or memory. Results show that, by using our proposed architecture, average link utilization has reduced by 10.25% for SPLASH-2 workloads. Our proposed design costs 1.12% less execution cycles than the traditional design on average.

    Mobile Phone as a Tool for Data Collection in Field Research
    The necessity of accurate and timely field data is shared among organizations engaged in fundamentally different activities, public services or commercial operations. Basically, there are three major components in the process of the qualitative research: data collection, interpretation and organization of data, and analytic process. Representative technological advancements in terms of innovation have been made in mobile devices (mobile phone, PDA-s, tablets, laptops, etc). Resources that can be potentially applied on the data collection activity for field researches in order to improve this process. This paper presents and discuss the main features of a mobile phone based solution for field data collection, composed of basically three modules: a survey editor, a server web application and a client mobile application. The data gathering process begins with the survey creation module, which enables the production of tailored questionnaires. The field workforce receives the questionnaire(s) on their mobile phones to collect the interviews responses and sending them back to a server for immediate analysis.
    Evaluation of Electronic Payment Systems Using Fuzzy Multi-Criteria Decision Making Approach
    Global competitiveness has recently become the biggest concern of both manufacturing and service companies. Electronic commerce, as a key technology enables the firms to reach all the potential consumers from all over the world. In this study, we have presented commonly used electronic payment systems, and then we have shown the evaluation of these systems in respect to different criteria. The payment systems which are included in this research are the credit card, the virtual credit card, the electronic money, the mobile payment, the credit transfer and the debit instruments. We have realized a systematic comparison of these systems in respect to three main criteria: Technical, economical and social. We have conducted a fuzzy multi-criteria decision making procedure to deal with the multi-attribute nature of the problem. The subjectiveness and imprecision of the evaluation process are modeled using triangular fuzzy numbers.
    GPS Navigator for Blind Walking in a Campus
    We developed a GPS-based navigation device for the blind, with audio guidance in Thai language. The device is composed of simple and inexpensive hardware components. Its user interface is quite simple. It determines optimal routes to various landmarks in our university campus by using heuristic search for the next waypoints. We tested the device and made note of its limitations and possible extensions.
    Identify Features and Parameters to Devise an Accurate Intrusion Detection System Using Artificial Neural Network

    The aim of this article is to explain how features of attacks could be extracted from the packets. It also explains how vectors could be built and then applied to the input of any analysis stage. For analyzing, the work deploys the Feedforward-Back propagation neural network to act as misuse intrusion detection system. It uses ten types if attacks as example for training and testing the neural network. It explains how the packets are analyzed to extract features. The work shows how selecting the right features, building correct vectors and how correct identification of the training methods with nodes- number in hidden layer of any neural network affecting the accuracy of system. In addition, the work shows how to get values of optimal weights and use them to initialize the Artificial Neural Network.

    Alternative to M-Estimates in Multisensor Data Fusion
    To solve the problem of multisensor data fusion under non-Gaussian channel noise. The advanced M-estimates are known to be robust solution while trading off some accuracy. In order to improve the estimation accuracy while still maintaining the equivalent robustness, a two-stage robust fusion algorithm is proposed using preliminary rejection of outliers then an optimal linear fusion. The numerical experiments show that the proposed algorithm is equivalent to the M-estimates in the case of uncorrelated local estimates and significantly outperforms the M-estimates when local estimates are correlated.
    Delay-Dependent Stability Criteria for Linear Time-Delay System of Neutral Type

    This paper proposes improved delay-dependent stability conditions of the linear time-delay systems of neutral type. The proposed methods employ a suitable Lyapunov-Krasovskii’s functional and a new form of the augmented system. New delay-dependent stability criteria for the systems are established in terms of Linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Numerical examples showed that the proposed method is effective and can provide less conservative results.

    Determination of an Efficient Differentiation Pathway of Stem Cells Employing Predictory Neural Network Model
    The stem cells have ability to differentiated themselves through mitotic cell division and various range of specialized cell types. Cellular differentiation is a way by which few specialized cell develops into more specialized.This paper studies the fundamental problem of computational schema for an artificial neural network based on chemical, physical and biological variables of state. By doing this type of study system could be model for a viable propagation of various economically important stem cells differentiation. This paper proposes various differentiation outcomes of artificial neural network into variety of potential specialized cells on implementing MATLAB version 2009. A feed-forward back propagation kind of network was created to input vector (five input elements) with single hidden layer and one output unit in output layer. The efficiency of neural network was done by the assessment of results achieved from this study with that of experimental data input and chosen target data. The propose solution for the efficiency of artificial neural network assessed by the comparatative analysis of “Mean Square Error" at zero epochs. There are different variables of data in order to test the targeted results.
    TS Fuzzy Controller to Stochastic Systems
    This paper proposes the analysis and design of robust fuzzy control to Stochastic Parametrics Uncertaint Linear systems. This system type to be controlled is partitioned into several linear sub-models, in terms of transfer function, forming a convex polytope, similar to LPV (Linear Parameters Varying) system. Once defined the linear sub-models of the plant, these are organized into fuzzy Takagi- Sugeno (TS) structure. From the Parallel Distributed Compensation (PDC) strategy, a mathematical formulation is defined in the frequency domain, based on the gain and phase margins specifications, to obtain robust PI sub-controllers in accordance to the Takagi- Sugeno fuzzy model of the plant. The main results of the paper are based on the robust stability conditions with the proposal of one Axiom and two Theorems.
    Improved Zero Text Watermarking Algorithm against Meaning Preserving Attacks
    Internet is largely composed of textual contents and a huge volume of digital contents gets floated over the Internet daily. The ease of information sharing and re-production has made it difficult to preserve author-s copyright. Digital watermarking came up as a solution for copyright protection of plain text problem after 1993. In this paper, we propose a zero text watermarking algorithm based on occurrence frequency of non-vowel ASCII characters and words for copyright protection of plain text. The embedding algorithm makes use of frequency non-vowel ASCII characters and words to generate a specialized author key. The extraction algorithm uses this key to extract watermark, hence identify the original copyright owner. Experimental results illustrate the effectiveness of the proposed algorithm on text encountering meaning preserving attacks performed by five independent attackers.
    Adaptive Rfid Positioning System Using Signal Level Matrix
    In this paper, we present a method named Signal Level Matrix (SLM) which can improve the accuracy and stability of active RFID indoor positioning system. Considering the accuracy and cost, we use uniform distribution mode to set up and separate the overlapped signal covering areas, in order to achieve preliminary location setting. Then, based on the proposed SLM concept and the characteristic of the signal strength value that attenuates as the distance increases, this system cross-examines the distribution of adjacent signals to locate the users more accurately. The experimental results indicate that the adaptive positioning method proposed in this paper could improve the accuracy and stability of the positioning system effectively and satisfyingly.
    Analyzing Multi-Labeled Data Based on the Roll of a Concept against a Semantic Range
    Classifying data hierarchically is an efficient approach to analyze data. Data is usually classified into multiple categories, or annotated with a set of labels. To analyze multi-labeled data, such data must be specified by giving a set of labels as a semantic range. There are some certain purposes to analyze data. This paper shows which multi-labeled data should be the target to be analyzed for those purposes, and discusses the role of a label against a set of labels by investigating the change when a label is added to the set of labels. These discussions give the methods for the advanced analysis of multi-labeled data, which are based on the role of a label against a semantic range.
    Effect of Adaptation Gain on system Performance for Model Reference Adaptive Control Scheme using MIT Rule
    Adaptive control involves modifying the control law used by the controller to cope with the fact that the parameters of the system being controlled change drastically due to change in environmental conditions or in system itself. This technique is based on the fundamental characteristic of adaptation of living organism. The adaptive control process is one that continuously and automatically measures the dynamic behavior of plant, compares it with the desired output and uses the difference to vary adjustable system parameters or to generate an actuating signal in such a way so that optimal performance can be maintained regardless of system changes. This paper deals with application of model reference adaptive control scheme in first order system. The rule which is used for this application is MIT rule. This paper also shows the effect of adaptation gain on the system performance. Simulation is done in MATLAB and results are discussed in detail.
    Exploring the Potential of Phase Change Memories as an Alternative to DRAM Technology
    Scalability poses a severe threat to the existing DRAM technology. The capacitors that are used for storing and sensing charge in DRAM are generally not scaled beyond 42nm. This is because; the capacitors must be sufficiently large for reliable sensing and charge storage mechanism. This leaves DRAM memory scaling in jeopardy, as charge sensing and storage mechanisms become extremely difficult. In this paper we provide an overview of the potential and the possibilities of using Phase Change Memory (PCM) as an alternative for the existing DRAM technology. The main challenges that we encounter in using PCM are, the limited endurance, high access latencies, and higher dynamic energy consumption than that of the conventional DRAM. We then provide an overview of various methods, which can be employed to overcome these drawbacks. Hybrid memories involving both PCM and DRAM can be used, to achieve good tradeoffs in access latency and storage density. We conclude by presenting, the results of these methods that makes PCM a potential replacement for the current DRAM technology.
    Performance Evaluation of Qos Parameters in Cognitive Radio Using Genetic Algorithm
    The efficient use of available licensed spectrum is becoming more and more critical with increasing demand and usage of the radio spectrum. This paper shows how the use of spectrum as well as dynamic spectrum management can be effectively managed and spectrum allocation schemes in the wireless communication systems be implemented and used, in future. This paper would be an attempt towards better utilization of the spectrum. This research will focus on the decision-making process mainly, with an assumption that the radio environment has already been sensed and the QoS requirements for the application have been specified either by the sensed radio environment or by the secondary user itself. We identify and study the characteristic parameters of Cognitive Radio and use Genetic Algorithm for spectrum allocation. Performance evaluation is done using MATLAB toolboxes.
    On Identity Disclosure Risk Measurement for Shared Microdata
    Probability-based identity disclosure risk measurement may give the same overall risk for different anonymization strategy of the same dataset. Some entities in the anonymous dataset may have higher identification risks than the others. Individuals are more concerned about higher risks than the average and are more interested to know if they have a possibility of being under higher risk. A notation of overall risk in the above measurement method doesn-t indicate whether some of the involved entities have higher identity disclosure risk than the others. In this paper, we have introduced an identity disclosure risk measurement method that not only implies overall risk, but also indicates whether some of the members have higher risk than the others. The proposed method quantifies the overall risk based on the individual risk values, the percentage of the records that have a risk value higher than the average and how larger the higher risk values are compared to the average. We have analyzed the disclosure risks for different disclosure control techniques applied to original microdata and present the results.
    Segmentation Free Nastalique Urdu OCR
    The electronically available Urdu data is in image form which is very difficult to process. Printed Urdu data is the root cause of problem. So for the rapid progress of Urdu language we need an OCR systems, which can help us to make Urdu data available for the common person. Research has been carried out for years to automata Arabic and Urdu script. But the biggest hurdle in the development of Urdu OCR is the challenge to recognize Nastalique Script which is taken as standard for writing Urdu language. Nastalique script is written diagonally with no fixed baseline which makes the script somewhat complex. Overlap is present not only in characters but in the ligatures as well. This paper proposes a method which allows successful recognition of Nastalique Script.
    Forecasting e-Learning Efficiency by Using Artificial Neural Networks and a Balanced Score Card
    Forecasting the values of the indicators, which characterize the effectiveness of performance of organizations is of great importance for their successful development. Such forecasting is necessary in order to assess the current state and to foresee future developments, so that measures to improve the organization-s activity could be undertaken in time. The article presents an overview of the applied mathematical and statistical methods for developing forecasts. Special attention is paid to artificial neural networks as a forecasting tool. Their strengths and weaknesses are analyzed and a synopsis is made of the application of artificial neural networks in the field of forecasting of the values of different education efficiency indicators. A method of evaluation of the activity of universities using the Balanced Scorecard is proposed and Key Performance Indicators for assessment of e-learning are selected. Resulting indicators for the evaluation of efficiency of the activity are proposed. An artificial neural network is constructed and applied in the forecasting of the values of indicators for e-learning efficiency on the basis of the KPI values.
    Steady State of Passive and Active Suspensions in the Physical Domain
    The steady state response of bond graphs representing passive and active suspension is presented. A bond graph with preferred derivative causality assignment to get the steady state is proposed. A general junction structure of this bond graph is proposed. The proposed methodology to passive and active suspensions is applied.
    How Efficiency of Password Attack Based on a Keyboard
    At present, dictionary attack has been the basic tool for recovering key passwords. In order to avoid dictionary attack, users purposely choose another character strings as passwords. According to statistics, about 14% of users choose keys on a keyboard (Kkey, for short) as passwords. This paper develops a framework system to attack the password chosen from Kkeys and analyzes its efficiency. Within this system, we build up keyboard rules using the adjacent and parallel relationship among Kkeys and then use these Kkey rules to generate password databases by depth-first search method. According to the experiment results, we find the key space of databases derived from these Kkey rules that could be far smaller than the password databases generated within brute-force attack, thus effectively narrowing down the scope of attack research. Taking one general Kkey rule, the combinations in all printable characters (94 types) with Kkey adjacent and parallel relationship, as an example, the derived key space is about 240 smaller than those in brute-force attack. In addition, we demonstrate the method's practicality and value by successfully cracking the access password to UNIX and PC using the password databases created