Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 32

Computer, Electrical, Automation, Control and Information Engineering

  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 32
    A Novel Convergence Accelerator for the LMS Adaptive Algorithm
    The least mean square (LMS) algorithmis one of the most well-known algorithms for mobile communication systems due to its implementation simplicity. However, the main limitation is its relatively slow convergence rate. In this paper, a booster using the concept of Markov chains is proposed to speed up the convergence rate of LMS algorithms. The nature of Markov chains makes it possible to exploit the past information in the updating process. Moreover, since the transition matrix has a smaller variance than that of the weight itself by the central limit theorem, the weight transition matrix converges faster than the weight itself. Accordingly, the proposed Markov-chain based booster thus has the ability to track variations in signal characteristics, and meanwhile, it can accelerate the rate of convergence for LMS algorithms. Simulation results show that the LMS algorithm can effectively increase the convergence rate and meantime further approach the Wiener solution, if the Markov-chain based booster is applied. The mean square error is also remarkably reduced, while the convergence rate is improved.
    Motivated Support Vector Regression using Structural Prior Knowledge
    It-s known that incorporating prior knowledge into support vector regression (SVR) can help to improve the approximation performance. Most of researches are concerned with the incorporation of knowledge in the form of numerical relationships. Little work, however, has been done to incorporate the prior knowledge on the structural relationships among the variables (referred as to Structural Prior Knowledge, SPK). This paper explores the incorporation of SPK in SVR by constructing appropriate admissible support vector kernel (SV kernel) based on the properties of reproducing kernel (R.K). Three-levels specifications of SPK are studied with the corresponding sub-levels of prior knowledge that can be considered for the method. These include Hierarchical SPK (HSPK), Interactional SPK (ISPK) consisting of independence, global and local interaction, Functional SPK (FSPK) composed of exterior-FSPK and interior-FSPK. A convenient tool for describing the SPK, namely Description Matrix of SPK is introduced. Subsequently, a new SVR, namely Motivated Support Vector Regression (MSVR) whose structure is motivated in part by SPK, is proposed. Synthetic examples show that it is possible to incorporate a wide variety of SPK and helpful to improve the approximation performance in complex cases. The benefits of MSVR are finally shown on a real-life military application, Air-toground battle simulation, which shows great potential for MSVR to the complex military applications.
    Computer-based Alarm Processing and Presentation Methods in Nuclear Power Plants
    Computerized alarm systems have been applied increasingly to nuclear power plants. For existing plants, an add-on computer alarm system is often installed to the control rooms. Alarm avalanches during the plant transients are major problems with the alarm systems in nuclear power plants. Computerized alarm systems can process alarms to reduce the number of alarms during the plant transients. This paper describes various alarm processing methods, an alarm cause tracking function, and various alarm presentation schemes to show alarm information to the operators effectively which are considered during the development of several computerized alarm systems for Korean nuclear power plants and are found to be helpful to the operators.
    Emotion Classification by Incremental Association Language Features
    The Major Depressive Disorder has been a burden of medical expense in Taiwan as well as the situation around the world. Major Depressive Disorder can be defined into different categories by previous human activities. According to machine learning, we can classify emotion in correct textual language in advance. It can help medical diagnosis to recognize the variance in Major Depressive Disorder automatically. Association language incremental is the characteristic and relationship that can discovery words in sentence. There is an overlapping-category problem for classification. In this paper, we would like to improve the performance in classification in principle of no overlapping-category problems. We present an approach that to discovery words in sentence and it can find in high frequency in the same time and can-t overlap in each category, called Association Language Features by its Category (ALFC). Experimental results show that ALFC distinguish well in Major Depressive Disorder and have better performance. We also compare the approach with baseline and mutual information that use single words alone or correlation measure.
    Visual Cryptography by Random Grids with Identifiable Shares
    This paper proposes a visual cryptography by random grids scheme with identifiable shares. The method encodes an image O in two shares that exhibits the following features: (1) each generated share has the same scale as O, (2) any share singly has noise-like appearance that reveals no secret information on O, (3) the secrets can be revealed by superimposing the two shares, (4) folding a share up can disclose some identification patterns, and (5) both of the secret information and the designated identification patterns are recognized by naked eye without any computation. The property to show up identification patterns on folded shares establishes a simple and friendly interface for users to manage the numerous shares created by VC schemes.
    Color Shift of Printing with Hybrid Halftone Images for Overlay Misalignment
    Color printing proceeds with multiple halftone separations overlay. Because of separation overlay misalignment in printing, the percentage of different primary color combination may vary and it will result in color shift. In traditional printing procedure with AM halftone, every separation has different screening angle to make the superposition pattern in a random style, which will reduce the color shift. To evaluate the color shift of printing with hybrid halftoning, we simulate printing procedure with halftone images overlay and calculate the color difference between expected color and color in different overlay misalignment configurations. The color difference for hybrid halftone and AM halftone is very close. So the color shift for hybrid halftone is acceptable with current color printing procedure.
    Grouping-Based Job Scheduling Model In Grid Computing
    Grid computing is a high performance computing environment to solve larger scale computational applications. Grid computing contains resource management, job scheduling, security problems, information management and so on. Job scheduling is a fundamental and important issue in achieving high performance in grid computing systems. However, it is a big challenge to design an efficient scheduler and its implementation. In Grid Computing, there is a need of further improvement in Job Scheduling algorithm to schedule the light-weight or small jobs into a coarse-grained or group of jobs, which will reduce the communication time, processing time and enhance resource utilization. This Grouping strategy considers the processing power, memory-size and bandwidth requirements of each job to realize the real grid system. The experimental results demonstrate that the proposed scheduling algorithm efficiently reduces the processing time of jobs in comparison to others.
    Enhancing Human-Computer Interaction and Feedback in Touchscreen Icon

    In order to enhance the usability of the human computer interface (HCI) on the touchscreen, this study explored the optimal tactile depth and effect of visual cues on the user-s tendency to touch the touchscreen icons. The experimental program was designed on the touchscreen in this study. Results indicated that the ratio of the icon size to the tactile depth was 1:0.106. There were significant effects of experienced users and novices on the tactile feedback depth (p < 0.01). In addition, the results proved that the visual cues provided a feedback that helped to guide the user-s touch icons accurately and increased the capture efficiency for a tactile recognition field. This tactile recognition field was 18.6 mm in length. There was consistency between the experienced users and novices under the visual cue effects. Finally, the study developed an applied design with touch feedback for touchscreen icons.

    Agent-Based Simulation and Analysis of Network-Centric Air Defense Missile Systems
    Network-Centric Air Defense Missile Systems (NCADMS) represents the superior development of the air defense missile systems and has been regarded as one of the major research issues in military domain at present. Due to lack of knowledge and experience on NCADMS, modeling and simulation becomes an effective approach to perform operational analysis, compared with those equation based ones. However, the complex dynamic interactions among entities and flexible architectures of NCADMS put forward new requirements and challenges to the simulation framework and models. ABS (Agent-Based Simulations) explicitly addresses modeling behaviors of heterogeneous individuals. Agents have capability to sense and understand things, make decisions, and act on the environment. They can also cooperate with others dynamically to perform the tasks assigned to them. ABS proves an effective approach to explore the new operational characteristics emerging in NCADMS. In this paper, based on the analysis of network-centric architecture and new cooperative engagement strategies for NCADMS, an agent-based simulation framework by expanding the simulation framework in the so-called System Effectiveness Analysis Simulation (SEAS) was designed. The simulation framework specifies components, relationships and interactions between them, the structure and behavior rules of an agent in NCADMS. Based on scenario simulations, information and decision superiority and operational advantages in NCADMS were analyzed; meanwhile some suggestions were provided for its future development.
    Design and Implementation of Project Time Management Risk Assessment Tool for SME Projects using Oracle Application Express
    Risk Assessment Tool (RAT) is an expert system that assesses, monitors, and gives preliminary treatments automatically based on the project plan. In this paper, a review was taken out for the current project time management risk assessment tools for SME software development projects, analyze risk assessment parameters, conditions, scenarios, and finally propose risk assessment tool (RAT) model to assess, treat, and monitor risks. An implementation prototype system is developed to validate the model.
    Evaluating Service Quality of Online Auction by Fuzzy MCDM
    This paper applies fuzzy set theory to evaluate the service quality of online auction. Service quality is a composition of various criteria. Among them many intangible attributes are difficult to measure. This characteristic introduces the obstacles for respondent in replying to the survey. So as to overcome this problem, we invite fuzzy set theory into the measurement of performance. By using AHP in obtaining criteria and TOPSIS in ranking, we found the most concerned dimension of service quality is Transaction Safety Mechanism and the least is Charge Item. Regarding to the most concerned attributes are information security, accuracy and information.
    A Study and Implementation of On-line Learning Diagnosis and Inquiry System
    In Knowledge Structure Graph, each course unit represents a phase of learning activities. Both learning portfolios and Knowledge Structure Graphs contain learning information of students and let teachers know which content are difficulties and fails. The study purposes "Dual Mode On-line Learning Diagnosis System" that integrates two search methods: learning portfolio and knowledge structure. Teachers can operate the proposed system and obtain the information of specific students without any computer science background. The teachers can find out failed students in advance and provide remedial learning resources.
    TOSOM: A Topic-Oriented Self-Organizing Map for Text Organization

    The self-organizing map (SOM) model is a well-known neural network model with wide spread of applications. The main characteristics of SOM are two-fold, namely dimension reduction and topology preservation. Using SOM, a high-dimensional data space will be mapped to some low-dimensional space. Meanwhile, the topological relations among data will be preserved. With such characteristics, the SOM was usually applied on data clustering and visualization tasks. However, the SOM has main disadvantage of the need to know the number and structure of neurons prior to training, which are difficult to be determined. Several schemes have been proposed to tackle such deficiency. Examples are growing/expandable SOM, hierarchical SOM, and growing hierarchical SOM. These schemes could dynamically expand the map, even generate hierarchical maps, during training. Encouraging results were reported. Basically, these schemes adapt the size and structure of the map according to the distribution of training data. That is, they are data-driven or dataoriented SOM schemes. In this work, a topic-oriented SOM scheme which is suitable for document clustering and organization will be developed. The proposed SOM will automatically adapt the number as well as the structure of the map according to identified topics. Unlike other data-oriented SOMs, our approach expands the map and generates the hierarchies both according to the topics and their characteristics of the neurons. The preliminary experiments give promising result and demonstrate the plausibility of the method.

    Power System Load Shedding: Key Issues and New Perspectives

    Optimal load shedding (LS) design as an emergency plan is one of the main control challenges posed by emerging new uncertainties and numerous distributed generators including renewable energy sources in a modern power system. This paper presents an overview of the key issues and new challenges on optimal LS synthesis concerning the integration of wind turbine units into the power systems. Following a brief survey on the existing LS methods, the impact of power fluctuation produced by wind powers on system frequency and voltage performance is presented. The most LS schemas proposed so far used voltage or frequency parameter via under-frequency or under-voltage LS schemes. Here, the necessity of considering both voltage and frequency indices to achieve a more effective and comprehensive LS strategy is emphasized. Then it is clarified that this problem will be more dominated in the presence of wind turbines.

    Generating Concept Trees from Dynamic Self-organizing Map

    Self-organizing map (SOM) provides both clustering and visualization capabilities in mining data. Dynamic self-organizing maps such as Growing Self-organizing Map (GSOM) has been developed to overcome the problem of fixed structure in SOM to enable better representation of the discovered patterns. However, in mining large datasets or historical data the hierarchical structure of the data is also useful to view the cluster formation at different levels of abstraction. In this paper, we present a technique to generate concept trees from the GSOM. The formation of tree from different spread factor values of GSOM is also investigated and the quality of the trees analyzed. The results show that concept trees can be generated from GSOM, thus, eliminating the need for re-clustering of the data from scratch to obtain a hierarchical view of the data under study.

    Flexible, Adaptable and Scaleable Business Rules Management System for Data Validation
    The policies governing the business of any organization are well reflected in her business rules. The business rules are implemented by data validation techniques, coded during the software development process. Any change in business policies results in change in the code written for data validation used to enforce the business policies. Implementing the change in business rules without changing the code is the objective of this paper. The proposed approach enables users to create rule sets at run time once the software has been developed. The newly defined rule sets by end users are associated with the data variables for which the validation is required. The proposed approach facilitates the users to define business rules using all the comparison operators and Boolean operators. Multithreading is used to validate the data entered by end user against the business rules applied. The evaluation of the data is performed by a newly created thread using an enhanced form of the RPN (Reverse Polish Notation) algorithm.
    Image Segmentation Using the K-means Algorithm for Texture Features
    This study aims to segment objects using the K-means algorithm for texture features. Firstly, the algorithm transforms color images into gray images. This paper describes a novel technique for the extraction of texture features in an image. Then, in a group of similar features, objects and backgrounds are differentiated by using the K-means algorithm. Finally, this paper proposes a new object segmentation algorithm using the morphological technique. The experiments described include the segmentation of single and multiple objects featured in this paper. The region of an object can be accurately segmented out. The results can help to perform image retrieval and analyze features of an object, as are shown in this paper.
    Programming Aid Tool for Detecting Common Mistakes of Novice Programmers in OpenMP Code

    OpenMP is an API for parallel programming model of shared memory multiprocessors. Novice OpenMP programmers often produce the code that compiler cannot find human errors. It was investigated how compiler coped with the common mistakes that can occur in OpenMP code. The latest version(4.4.3) of GCC is used for this research. It was found that GCC compiled the codes without any errors or warnings. In this paper the programming aid tool is presented for OpenMP programs. It can check 12 common mistakes that novice programmer can commit during the programming of OpenMP. It was demonstrated that the programming aid tool can detect the various common mistakes that GCC failed to detect.

    Frequency-Domain Design of Fractional-Order FIR Differentiators
    In this paper, a fractional-order FIR differentiator design method using the differential evolution (DE) algorithm is presented. In the proposed method, the FIR digital filter is designed to meet the frequency response of a desired fractal-order differentiator, which is evaluated in the frequency domain. To verify the design performance, another design method considered in the time-domain is also provided. Simulation results reveal the efficiency of the proposed method.
    An Algorithm of Ordered Schur Factorization For Real Nonsymmetric Matrix
    In this paper, we present an algorithm for computing a Schur factorization of a real nonsymmetric matrix with ordered diagonal blocks such that upper left blocks contains the largest magnitude eigenvalues. Especially in case of multiple eigenvalues, when matrix is non diagonalizable, we construct an invariant subspaces with few additional tricks which are heuristic and numerical results shows the stability and accuracy of the algorithm.
    Applying Fuzzy FP-Growth to Mine Fuzzy Association Rules
    In data mining, the association rules are used to find for the associations between the different items of the transactions database. As the data collected and stored, rules of value can be found through association rules, which can be applied to help managers execute marketing strategies and establish sound market frameworks. This paper aims to use Fuzzy Frequent Pattern growth (FFP-growth) to derive from fuzzy association rules. At first, we apply fuzzy partition methods and decide a membership function of quantitative value for each transaction item. Next, we implement FFP-growth to deal with the process of data mining. In addition, in order to understand the impact of Apriori algorithm and FFP-growth algorithm on the execution time and the number of generated association rules, the experiment will be performed by using different sizes of databases and thresholds. Lastly, the experiment results show FFPgrowth algorithm is more efficient than other existing methods.
    Squaring Construction for Repeated-Root Cyclic Codes
    We considered repeated-root cyclic codes whose block length is divisible by the characteristic of the underlying field. Cyclic self dual codes are also the repeated root cyclic codes. It is known about the one-level squaring construction for binary repeated root cyclic codes. In this correspondence, we introduced of two level squaring construction for binary repeated root cyclic codes of length 2a b , a > 0, b is odd.
    Strategic Information in the Game of Go
    We introduce a novel approach to measuring how humans learn based on techniques from information theory and apply it to the oriental game of Go. We show that the total amount of information observable in human strategies, called the strategic information, remains constant for populations of players of differing skill levels for well studied patterns of play. This is despite the very large amount of knowledge required to progress from the recreational players at one end of our spectrum to the very best and most experienced players in the world at the other and is in contrast to the idea that having more knowledge might imply more 'certainty' in what move to play next. We show this is true for very local up to medium sized board patterns, across a variety of different moves using 80,000 game records. Consequences for theoretical and practical AI are outlined.
    Frequency Regulation Support by Variable-Speed Wind Turbines and SMES
    This paper quantifies the impact of providing a shortterm excess active power support of a variable speed wind turbine (VSWT) and effect of super magnetic energy storage (SMES) unit on frequency control, particularly temporary minimum frequency (TMF) term. To demonstrate the effect of these factors on the power system frequency, a three-area power system is considered as a test system.
    Motivated Support Vector Regression with Structural Prior Knowledge
    It-s known that incorporating prior knowledge into support vector regression (SVR) can help to improve the approximation performance. Most of researches are concerned with the incorporation of knowledge in form of numerical relationships. Little work, however, has been done to incorporate the prior knowledge on the structural relationships among the variables (referred as to Structural Prior Knowledge, SPK). This paper explores the incorporation of SPK in SVR by constructing appropriate admissible support vector kernel (SV kernel) based on the properties of reproducing kernel (R.K). Three-levels specifications of SPK are studies with the corresponding sub-levels of prior knowledge that can be considered for the method. These include Hierarchical SPK (HSPK), Interactional SPK (ISPK) consisting of independence, global and local interaction, Functional SPK (FSPK) composed of exterior-FSPK and interior-FSPK. A convenient tool for describing the SPK, namely Description Matrix of SPK is introduced. Subsequently, a new SVR, namely Motivated Support Vector Regression (MSVR) whose structure is motivated in part by SPK, is proposed. Synthetic examples show that it is possible to incorporate a wide variety of SPK and helpful to improve the approximation performance in complex cases. The benefits of MSVR are finally shown on a real-life military application, Air-toground battle simulation, which shows great potential for MSVR to the complex military applications.
    Optimal Generation Expansion Planning Strategy with Carbon Trading
    Fossil fuel-firing power plants dominate electric power generation in Taiwan, which are also the major contributor to Green House gases (GHG). CO2 is the most important greenhouse gas that cause global warming. This paper penetrates the relationship between carbon trading for GHG reduction and power generation expansion planning (GEP) problem for the electrical utility. The Particle Swarm Optimization (PSO) Algorithm is presented to deal with the generation expansion planning strategy of the utility with independent power providers (IPPs). The utility has to take both the IPPs- participation and environment impact into account when a new generation unit is considering expanded from view of supply side.
    Trajectory Control of a Robotic Manipulator Utilizing an Adaptive Fuzzy Sliding Mode
    In this paper, a novel adaptive fuzzy sliding mode control method is proposed for the robust tracking control of robotic manipulators. The proposed controller possesses the advantages of adaptive control, fuzzy control, and sliding mode control. First, system stability and robustness are guaranteed based on the sliding mode control. Further, fuzzy rules are developed incorporating with adaptation law to alleviate the input chattering effectively. Stability of the control system is proven by using the Lyapunov method. An application to a three-degree-of-freedom robotic manipulator is carried out. Accurate trajectory tracking as well as robustness is achieved. Input chattering is greatly eliminated.
    Response Quality Evaluation in Heterogeneous Question Answering System: A Black-box Approach

    The evaluation of the question answering system is a major research area that needs much attention. Before the rise of domain-oriented question answering systems based on natural language understanding and reasoning, evaluation is never a problem as information retrieval-based metrics are readily available for use. However, when question answering systems began to be more domains specific, evaluation becomes a real issue. This is especially true when understanding and reasoning is required to cater for a wider variety of questions and at the same time achieve higher quality responses The research in this paper discusses the inappropriateness of the existing measure for response quality evaluation and in a later part, the call for new standard measures and the related considerations are brought forward. As a short-term solution for evaluating response quality of heterogeneous systems, and to demonstrate the challenges in evaluating systems of different nature, this research presents a black-box approach using observation, classification scheme and a scoring mechanism to assess and rank three example systems (i.e. AnswerBus, START and NaLURI).

    Artificial Visual Percepts for Image Understanding
    Visual inputs are one of the key sources from which humans perceive the environment and 'understand' what is happening. Artificial systems perceive the visual inputs as digital images. The images need to be processed and analysed. Within the human brain, processing of visual inputs and subsequent development of perception is one of its major functionalities. In this paper we present part of our research project, which aims at the development of an artificial model for visual perception (or 'understanding') based on the human perceptive and cognitive systems. We propose a new model for perception from visual inputs and a way of understaning or interpreting images using the model. We demonstrate the implementation and use of the model with a real image data set.
    Design of Buffer Management for Industry to Avoid Sensor Data- Conflicts
    To reduce accidents in the industry, WSNs(Wireless Sensor networks)- sensor data is used. WSNs- sensor data has the persistence and continuity. therefore, we design and exploit the buffer management system that has the persistence and continuity to avoid and delivery data conflicts. To develop modules, we use the multi buffers and design the buffer management modules that transfer sensor data through the context-aware methods.
    Development of Reliable Web-Based Laboratories for Developing Countries
    In online context, the design and implementation of effective remote laboratories environment is highly challenging on account of hardware and software needs. This paper presents the remote laboratory software framework modified from ilab shared architecture (ISA). The ISA is a framework which enables students to remotely acccess and control experimental hardware using internet infrastructure. The need for remote laboratories came after experiencing problems imposed by traditional laboratories. Among them are: the high cost of laboratory equipment, scarcity of space, scarcity of technical personnel along with the restricted university budget creates a significant bottleneck on building required laboratory experiments. The solution to these problems is to build web-accessible laboratories. Remote laboratories allow students and educators to interact with real laboratory equipment located anywhere in the world at anytime. Recently, many universities and other educational institutions especially in third world countries rely on simulations because they do not afford the experimental equipment they require to their students. Remote laboratories enable users to get real data from real-time hand-on experiments. To implement many remote laboratories, the system architecture should be flexible, understandable and easy to implement, so that different laboratories with different hardware can be deployed easily. The modifications were made to enable developers to add more equipment in ISA framework and to attract the new developers to develop many online laboratories.
    Achieving High Availability by Implementing Beowulf Cluster
    A computer cluster is a group of tightly coupled computers that work together closely so that in many respects they can be viewed as though they are a single computer. The components of a cluster are commonly, but not always, connected to each other through fast local area networks. Clusters are usually deployed to improve performance and/or availability over that provided by a single computer, while typically being much more cost-effective than single computers of comparable speed or availability. This paper proposed the way to implement the Beowulf Cluster in order to achieve high performance as well as high availability.