Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 17

Computer, Electrical, Automation, Control and Information Engineering

  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 17
    631
    Ontology-based Concept Weighting for Text Documents
    Abstract:
    Documents clustering become an essential technology with the popularity of the Internet. That also means that fast and high-quality document clustering technique play core topics. Text clustering or shortly clustering is about discovering semantically related groups in an unstructured collection of documents. Clustering has been very popular for a long time because it provides unique ways of digesting and generalizing large amounts of information. One of the issues of clustering is to extract proper feature (concept) of a problem domain. The existing clustering technology mainly focuses on term weight calculation. To achieve more accurate document clustering, more informative features including concept weight are important. Feature Selection is important for clustering process because some of the irrelevant or redundant feature may misguide the clustering results. To counteract this issue, the proposed system presents the concept weight for text clustering system developed based on a k-means algorithm in accordance with the principles of ontology so that the important of words of a cluster can be identified by the weight values. To a certain extent, it has resolved the semantic problem in specific areas.
    16
    4522
    A Novel Web Metric for the Evaluation of Internet Trends
    Abstract:
    Web 2.0 (social networking, blogging and online forums) can serve as a data source for social science research because it contains vast amount of information from many different users. The volume of that information has been growing at a very high rate and becoming a network of heterogeneous data; this makes things difficult to find and is therefore not almost useful. We have proposed a novel theoretical model for gathering and processing data from Web 2.0, which would reflect semantic content of web pages in better way. This article deals with the analysis part of the model and its usage for content analysis of blogs. The introductory part of the article describes methodology for the gathering and processing data from blogs. The next part of the article is focused on the evaluation and content analysis of blogs, which write about specific trend.
    15
    4749
    Hybridizing Genetic Algorithm with Biased Chance Local Search
    Abstract:
    This paper explores university course timetabling problem. There are several characteristics that make scheduling and timetabling problems particularly difficult to solve: they have huge search spaces, they are often highly constrained, they require sophisticated solution representation schemes, and they usually require very time-consuming fitness evaluation routines. Thus standard evolutionary algorithms lack of efficiency to deal with them. In this paper we have proposed a memetic algorithm that incorporates the problem specific knowledge such that most of chromosomes generated are decoded into feasible solutions. Generating vast amount of feasible chromosomes makes the progress of search process possible in a time efficient manner. Experimental results exhibit the advantages of the developed Hybrid Genetic Algorithm than the standard Genetic Algorithm.
    14
    5169
    Method for Concept Labeling Based on Mapping between Ontology and Thesaurus
    Abstract:
    When designing information systems that deal with large amount of domain knowledge, system designers need to consider ambiguities of labeling termsin domain vocabulary for navigating users in the information space. The goal of this study is to develop a methodology for system designers to label navigation items, taking account of ambiguities stems from synonyms or polysemes of labeling terms. In this paper, we propose a method for concept labeling based on mappings between domain ontology andthesaurus, and report results of an empirical evaluation.
    13
    5883
    Approximation Incremental Training Algorithm Based on a Changeable Training Set
    Abstract:
    The quick training algorithms and accurate solution procedure for incremental learning aim at improving the efficiency of training of SVR, whereas there are some disadvantages for them, i.e. the nonconvergence of the formers for changeable training set and the inefficiency of the latter for a massive dataset. In order to handle the problems, a new training algorithm for a changeable training set, named Approximation Incremental Training Algorithm (AITA), was proposed. This paper explored the reason of nonconvergence theoretically and discussed the realization of AITA, and finally demonstrated the benefits of AITA both on precision and efficiency.
    12
    8716
    Robust Sensorless Speed Control of Induction Motor with DTFC and Fuzzy Speed Regulator
    Abstract:
    Recent developments in Soft computing techniques, power electronic switches and low-cost computational hardware have made it possible to design and implement sophisticated control strategies for sensorless speed control of AC motor drives. Such an attempt has been made in this work, for Sensorless Speed Control of Induction Motor (IM) by means of Direct Torque Fuzzy Control (DTFC), PI-type fuzzy speed regulator and MRAS speed estimator strategy, which is absolutely nonlinear in its nature. Direct torque control is known to produce quick and robust response in AC drive system. However, during steady state, torque, flux and current ripple occurs. So, the performance of conventional DTC with PI speed regulator can be improved by implementing fuzzy logic techniques. Certain important issues in design including the space vector modulated (SVM) 3-Ф voltage source inverter, DTFC design, generation of reference torque using PI-type fuzzy speed regulator and sensor less speed estimator have been resolved. The proposed scheme is validated through extensive numerical simulations on MATLAB. The simulated results indicate the sensor less speed control of IM with DTFC and PI-type fuzzy speed regulator provides satisfactory high dynamic and static performance compare to conventional DTC with PI speed regulator.
    11
    9002
    Photo Mosaic Smartphone Application in Client-Server Based Large-Scale Image Databases
    Abstract:
    In this paper we present a photo mosaic smartphone application in client-server based large-scale image databases. Photo mosaic is not a new concept, but there are very few smartphone applications especially for a huge number of images in the client-server environment. To support large-scale image databases, we first propose an overall framework working as a client-server model. We then present a concept of image-PAA features to efficiently handle a huge number of images and discuss its lower bounding property. We also present a best-match algorithm that exploits the lower bounding property of image-PAA. We finally implement an efficient Android-based application and demonstrate its feasibility.
    10
    9866
    Revised PLWAP Tree with Non-frequent Items for Mining Sequential Pattern
    Abstract:

    Sequential pattern mining is a challenging task in data mining area with large applications. One among those applications is mining patterns from weblog. Recent times, weblog is highly dynamic and some of them may become absolute over time. In addition, users may frequently change the threshold value during the data mining process until acquiring required output or mining interesting rules. Some of the recently proposed algorithms for mining weblog, build the tree with two scans and always consume large time and space. In this paper, we build Revised PLWAP with Non-frequent Items (RePLNI-tree) with single scan for all items. While mining sequential patterns, the links related to the nonfrequent items are not considered. Hence, it is not required to delete or maintain the information of nodes while revising the tree for mining updated transactions. The algorithm supports both incremental and interactive mining. It is not required to re-compute the patterns each time, while weblog is updated or minimum support changed. The performance of the proposed tree is better, even the size of incremental database is more than 50% of existing one. For evaluation purpose, we have used the benchmark weblog dataset and found that the performance of proposed tree is encouraging compared to some of the recently proposed approaches.

    9
    10009
    Indonesian News Classification using Support Vector Machine
    Abstract:
    Digital news with a variety topics is abundant on the internet. The problem is to classify news based on its appropriate category to facilitate user to find relevant news rapidly. Classifier engine is used to split any news automatically into the respective category. This research employs Support Vector Machine (SVM) to classify Indonesian news. SVM is a robust method to classify binary classes. The core processing of SVM is in the formation of an optimum separating plane to separate the different classes. For multiclass problem, a mechanism called one against one is used to combine the binary classification result. Documents were taken from the Indonesian digital news site, www.kompas.com. The experiment showed a promising result with the accuracy rate of 85%. This system is feasible to be implemented on Indonesian news classification.
    8
    11041
    The Optimal Equilibrium Capacity of Information Hiding Based on Game Theory
    Abstract:
    Game theory could be used to analyze the conflicted issues in the field of information hiding. In this paper, 2-phase game can be used to build the embedder-attacker system to analyze the limits of hiding capacity of embedding algorithms: the embedder minimizes the expected damage and the attacker maximizes it. In the system, the embedder first consumes its resource to build embedded units (EU) and insert the secret information into EU. Then the attacker distributes its resource evenly to the attacked EU. The expected equilibrium damage, which is maximum damage in value from the point of view of the attacker and minimum from the embedder against the attacker, is evaluated by the case when the attacker attacks a subset from all the EU. Furthermore, the optimal equilibrium capacity of hiding information is calculated through the optimal number of EU with the embedded secret information. Finally, illustrative examples of the optimal equilibrium capacity are presented.
    7
    12157
    An Advanced Hybrid P2p Botnet 2.0
    Abstract:
    Recently, malware attacks have become more serious over the Internet by e-mail, denial of service (DoS) or distributed denial of service (DDoS). The Botnets have become a significant part of the Internet malware attacks. The traditional botnets include three parts – botmaster, command and control (C&C) servers and bots. The C&C servers receive commands from botmaster and control the distributions of computers remotely. Bots use DNS to find the positions of C&C server. In this paper, we propose an advanced hybrid peer-to-peer (P2P) botnet 2.0 (AHP2P botnet 2.0) using web 2.0 technology to hide the instructions from botmaster into social sites, which are regarded as C&C servers. Servent bots are regarded as sub-C&C servers to get the instructions from social sites. The AHP2P botnet 2.0 can evaluate the performance of servent bots, reduce DNS traffics from bots to C&C servers, and achieve harder detection bots actions than IRC-based botnets over the Internet.
    6
    12488
    Wireless Control for an Induction Motor
    Abstract:
    This paper discusses the development of wireless structure control of an induction motor scalar drives. This was realised up on the wireless WiFi networks. This strategy of control is ensured by the use of Wireless ad hoc networks and a virtual network interface based on VNC which is used to make possible to take the remote control of a PC connected on a wireless Ethernet network. Verification of the proposed strategy of control is provided by experimental realistic tests on scalar controlled induction motor drives. The experimental results of the implementations with their analysis are detailed.
    5
    13567
    Predicting Oil Content of Fresh Palm Fruit Using Transmission-Mode Ultrasonic Technique
    Abstract:
    In this paper, an ultrasonic technique is proposed to predict oil content in a fresh palm fruit. This is accomplished by measuring the attenuation based on ultrasonic transmission mode. Several palm fruit samples with known oil content by Soxhlet extraction (ISO9001:2008) were tested with our ultrasonic measurement. Amplitude attenuation data results for all palm samples were collected. The Feedforward Neural Networks (FNNs) are applied to predict the oil content for the samples. The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) of the FNN model for predicting oil content percentage are 7.6186 and 5.2287 with the correlation coefficient (R) of 0.9193.
    4
    13776
    Spacecraft Neural Network Control System Design using FPGA
    Abstract:

    Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffers the limitation in time and cost. With low precision artificial neural network design, FPGAs have higher speed and smaller size for real time application than the VLSI and DSP chips. So, many researchers have made great efforts on the realization of neural network (NN) using FPGA technique. In this paper, an introduction of ANN and FPGA technique are briefly shown. Also, Hardware Description Language (VHDL) code has been proposed to implement ANNs as well as to present simulation results with floating point arithmetic. Synthesis results for ANN controller are developed using Precision RTL. Proposed VHDL implementation creates a flexible, fast method and high degree of parallelism for implementing ANN. The implementation of multi-layer NN using lookup table LUT reduces the resource utilization for implementation and time for execution.

    3
    14114
    Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis
    Abstract:

    This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.

    2
    14922
    A Third Drop Level For TCP-RED Congestion Control Strategy
    Abstract:
    This work presents the Risk Threshold RED (RTRED) congestion control strategy for TCP networks. In addition to the maximum and minimum thresholds in existing RED-based strategies, we add a third dropping level. This new dropping level is the risk threshold which works with the actual and average queue sizes to detect the immediate congestion in gateways. Congestion reaction by RTRED is on time. The reaction to congestion is neither too early, to avoid unfair packet losses, nor too late to avoid packet dropping from time-outs. We compared our novel strategy with RED and ARED strategies for TCP congestion handling using a NS-2 simulation script. We found that the RTRED strategy outperformed RED and ARED.
    1
    15831
    Improving Digital Image Edge Detection by Fuzzy Systems
    Abstract:
    Image Edge Detection is one of the most important parts of image processing. In this paper, by fuzzy technique, a new method is used to improve digital image edge detection. In this method, a 3x3 mask is employed to process each pixel by means of vicinity. Each pixel is considered a fuzzy input and by examining fuzzy rules in its vicinity, the edge pixel is specified and by utilizing calculation algorithms in image processing, edges are displayed more clearly. This method shows significant improvement compared to different edge detection methods (e.g. Sobel, Canny).