Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 22

Computer, Electrical, Automation, Control and Information Engineering

  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 22
    16926
    Using Smartphones as an Instrument of Early Warning and Emergency Localization
    Authors:
    Abstract:

    This paper suggests using smartphones and community GPS application to make alerts more accurate and therefore positively influence the entire warning process. The paper is based on formerly published paper describing a Radio-HELP system. It summarizes existing methods and lists the advantages of proposed solution. The paper analyzes the advantages and disadvantages of each possible input, processing and output of the warning system.

    21
    16946
    Determination and Comparison of Fabric Pills Distribution Using Image Processing and Spatial Data Analysis Tools
    Abstract:

    This work deals with the determination and comparison of pill patterns in 2 sets of fabric samples which differ in way of pill creation. The first set contains fabric samples with the pills created by simulation on a Martindale abrasion machine, while pills in the second set originated during normal wearing and maintenance. The goal of the study is to determine whether the pattern of the fabric pills created by simulation is the same as the pattern of naturally occurring pills. The system of determination and comparison of the pills is based on image processing and spatial data analysis tools. Firstly, 3D reconstruction of the fabric surfaces with the pills is realized with using a gradient fields method. The gradient fields method creates a 3D fabric surface from a set of 4 images. Thereafter, the pills are detected in 3D fabric surfaces using image-processing tools in the MATLAB software. Determination and comparison of the pills patterns of two sets of fabric samples is based on spatial data analysis using tools in R software.

    20
    16952
    An Educational Data Mining System for Advising Higher Education Students
    Abstract:

    Educational  data mining  is  a  specific  data   mining field applied to data originating from educational environments, it relies on different  approaches to discover hidden knowledge  from  the  available   data. Among these approaches are   machine   learning techniques which are used to build a system that acquires learning from previous data. Machine learning can be applied to solve different regression, classification, clustering and optimization problems.

    In  our  research, we propose  a “Student  Advisory  Framework” that  utilizes  classification  and  clustering  to  build  an  intelligent system. This system can be used to provide pieces of consultations to a first year  university  student to  pursue a  certain   education   track   where  he/she  will  likely  succeed  in, aiming  to  decrease   the  high  rate   of  academic  failure   among these  students.  A real case study  in Cairo  Higher  Institute  for Engineering, Computer  Science  and  Management  is  presented using  real  dataset   collected  from  2000−2012.The dataset has two main components: pre-higher education dataset and first year courses results dataset. Results have proved the efficiency of the suggested framework.

    19
    16999
    K-best Night Vision Devices by Multi-Criteria Mixed-Integer Optimization Modeling
    Abstract:

    The paper describes an approach for defining of k-best night vision devices based on multi-criteria mixed-integer optimization modeling. The parameters of night vision devices are considered as criteria that have to be optimized. Using different user preferences for the relative importance between parameters different choice of k-best devices can be defined. An ideal device with all of its parameters at their optimum is used to determine how far the particular device from the ideal one is. A procedure for evaluation of deviation between ideal solution and k-best solutions is presented. The applicability of the proposed approach is numerically illustrated using real night vision devices data. The proposed approach contributes to quality of decisions about choice of night vision devices by making the decision making process more certain, rational and efficient. 

    18
    17009
    Remote Control Software for Rohde and Schwarz Instruments
    Abstract:

    The paper describes software for remote control and measuring with new Graphical User Interface for Rohde & Schwarz instruments. Software allows remote control through Ethernet and supports basic and advanced functions for control various type of instruments like network and spectrum analyzers, power meters, signal generators and oscilloscopes. Standard Commands for Programmable Instruments (SCPI) and Virtual Instrument Software Architecture (VISA) are used for remote control and setup of instruments. Developed software is modular with user friendly graphic user interface for each instrument with automatic identification of instruments.

    17
    17045
    ICT for Social Networking in Flood Risk and Knowledge Management Strategies- An MCDA Approach
    Abstract:

    This paper discusses the role and importance of Information and Communication Technologies (ICT) and social Networking (SN) in the process of decision making for Flood Risk and Knowledge Management Strategies. We use Mozambique Red Cross (CVM) as the case study and further more we address scenarios for flood risk management strategies, using earlier warning and social networking and we argue that a sustainable desirable stage of life can be achieved by developing scenario strategic planning based on backcasting.

    16
    17052
    Comparison of Two Interval Models for Interval-Valued Differential Evolution
    Abstract:

    The author previously proposed an extension of differential evolution. The proposed method extends the processes of DE to handle interval numbers as genotype values so that DE can be applied to interval-valued optimization problems. The interval DE can employ either of two interval models, the lower and upper model or the center and width model, for specifying genotype values. Ability of the interval DE in searching for solutions may depend on the model. In this paper, the author compares the two models to investigate which model contributes better for the interval DE to find better solutions. Application of the interval DE is evolutionary training of interval-valued neural networks. A result of preliminary study indicates that the CW model is better than the LU model: the interval DE with the CW model could evolve better neural networks. 

    15
    17053
    Particle Swarm Optimization with Interval-valued Genotypes and Its Application to Neuroevolution
    Abstract:

    The author proposes an extension of particle swarm optimization (PSO) for solving interval-valued optimization problems and applies the extended PSO to evolutionary training of neural networks (NNs) with interval weights. In the proposed PSO, values in the genotypes are not real numbers but intervals. Experimental results show that interval-valued NNs trained by the proposed method could well approximate hidden target functions despite the fact that no training data was explicitly provided.

    14
    17069
    Designing Software Quality Measurement System for Telecommunication Industry Using Object-Oriented Technique
    Abstract:

    Numbers of software quality measurement system have been implemented over the past few years, but none of them focuses on telecommunication industry. Software quality measurement system for telecommunication industry was a system that could calculate the quality value of the measured software that totally focused in telecommunication industry. Before designing a system, quality factors, quality attributes and quality metrics were identified based on literature review and survey. Then, using the identified quality factors, quality attributes and quality metrics, quality model for telecommunication industry was constructed. Each identified quality metrics had its own formula. Quality value for the system was measured based on the quality metrics and aggregated by referring to the quality model. It would classify the quality level of the software based on Net Satisfaction Index (NSI). The system was designed using object-oriented approach in web-based environment. Thus, existing of software quality measurement system was important to both developers and users in order to produce high quality software product for telecommunication industry.

    13
    17097
    Augmented Reality on Android
    Abstract:

    Augmented Reality is an application which combines a live view of real-world environment and computer-generated images. This paper studies and demonstrates an efficient Augmented Reality development in the mobile Android environment with the native Java language and Android SDK. Major components include Barcode Reader, File Loader, Marker Detector, Transform Matrix Generator, and a cloud database.

    12
    17107
    Off-Line Signature Recognition Based On Angle Features and GRNN Neural Networks
    Abstract:

    This research presents a handwritten signature recognition based on angle feature vector using Artificial Neural Network (ANN). Each signature image will be represented by an Angle vector. The feature vector will constitute the input to the ANN. The collection of signature images will be divided into two sets. One set will be used for training the ANN in a supervised fashion. The other set which is never seen by the ANN will be used for testing. After training, the ANN will be tested for recognition of the signature. When the signature is classified correctly, it is considered correct recognition otherwise it is a failure.

    11
    17108
    A Distance Function for Data with Missing Values and Its Application
    Abstract:

    Missing values in data are common in real world applications. Since the performance of many data mining algorithms depend critically on it being given a good metric over the input space, we decided in this paper to define a distance function for unlabeled datasets with missing values. We use the Bhattacharyya distance, which measures the similarity of two probability distributions, to define our new distance function. According to this distance, the distance between two points without missing attributes values is simply the Mahalanobis distance. When on the other hand there is a missing value of one of the coordinates, the distance is computed according to the distribution of the missing coordinate. Our distance is general and can be used as part of any algorithm that computes the distance between data points. Because its performance depends strongly on the chosen distance measure, we opted for the k nearest neighbor classifier to evaluate its ability to accurately reflect object similarity. We experimented on standard numerical datasets from the UCI repository from different fields. On these datasets we simulated missing values and compared the performance of the kNN classifier using our distance to other three basic methods. Our  experiments show that kNN using our distance function outperforms the kNN using other methods. Moreover, the runtime performance of our method is only slightly higher than the other methods.

    10
    17117
    Infrared Camera-Based Hand Gesture Space Touch System Implementation of Smart Device Environment
    Abstract:

    This paper proposes a method to recognize the tip of a finger and space touch hand gesture using an infrared camera in a smart device environment. The proposed method estimates the tip of a finger with a curvature-based ellipse fitting algorithm, and verifies that the estimated object is indeed a finger with an ellipse fitting rectangular area. The feature extracted from the verified finger tip is used to implement the movement of a mouse and clicking gesture. The proposed algorithm was implemented with an actual smart device to test the proposed method. Empirical parameters were obtained from the keypad software and an image analysis tool for the performance optimization, and a comparative analysis with conventional research showed improved performance with the proposed method.

    9
    17149
    Parallel Priority Region Approach to Detect Background
    Abstract:

    Background detection is essential in video analyses; optimization is often needed in order to achieve real time calculation. Information gathered by dual cameras placed in the front and rear part of an Autonomous Vehicle (AV) is integrated for background detection. In this paper, real time calculation is achieved on the proposed technique by using Priority Regions (PR) and Parallel Processing together where each frame is divided into regions then and each region process is processed in parallel. PR division depends upon driver view limitations. A background detection system is built on the Temporal Difference (TD) and Gaussian Filtering (GF). Temporal Difference and Gaussian Filtering with multi threshold and sigma (weight) value are be based on PR characteristics. The experiment result is prepared on real scene. Comparison of the speed and accuracy with traditional background detection techniques, the effectiveness of PR and parallel processing are also discussed in this paper.

    8
    17161
    Cryptanalysis of Yang-Li-Liao’s Simple Three-Party Key Exchange (S-3PAKE) Protocol
    Abstract:

    Three-party password authenticated key exchange (3PAKE) protocols are widely deployed on lots of remote user authentication system due to its simplicity and convenience of maintaining a human-memorable password at client side to achieve secure communication within a hostile network. Recently, an improvement of 3PAKE protocol by processing a built-in data attached to other party for identity authentication to individual data was proposed by some researchers. However, this paper points out that the improved 3PAKE protocol is still vulnerable to undetectable on-line dictionary attack and off-line dictionary attack.

    7
    17188
    A General Mandatory Access Control Framework in Distributed Environments
    Abstract:

    In this paper, we propose a general mandatory access framework for distributed systems. The framework can be applied into multiple operating systems and can handle multiple stakeholders. Despite considerable advancements in the area of mandatory access control, a certain approach to enforcing mandatory access control can only be applied in a specific operating system. Other than PC market in which windows captures the overwhelming shares, there are a number of popular operating systems in the emerging smart phone environment, i.e. Android, Windows mobile, Symbian, RIM. It should be noted that more and more stakeholders are involved in smartphone software, such as devices owners, service providers and application providers. Our framework includes three parts—local decision layer, the middle layer and the remote decision layer. The middle layer takes charge of managing security contexts, OS API, operations and policy combination. The design of the remote decision layer doesn’t depend on certain operating systems because of the middle layer’s existence. We implement the framework in windows, linux and other popular embedded systems.

    6
    17192
    Extension of the Client-Centric Approach under Small Buffer Space
    Abstract:

    Periodic broadcast is a cost-effective solution for large-scale distribution of popular videos because this approach guarantees constant worst service latency, regardless of the number of video requests. An essential periodic broadcast method is the client-centric approach (CCA), which allows clients to use smaller receiving bandwidth to download broadcast data. An enhanced version, namely CCA++, was proposed to yield a shorter waiting time. This work further improves CCA++ in reducing client buffer requirements. The new scheme decreases the buffer requirements by as much as 52% when compared to CCA++. This study also provides an analytical evaluation to demonstrate the performance advantage, as compared with particular schemes.

    5
    17193
    Comparison of Mamdani and Sugeno Fuzzy Interference Systems for the Breast Cancer Risk
    Abstract:

    Breast cancer is a major health burden worldwide being a major cause of death amongst women. In this paper, Fuzzy Inference Systems (FIS) are developed for the evaluation of breast cancer risk using Mamdani-type and Sugeno-type models. The paper outlines the basic difference between Mamdani-type FIS and Sugeno-type FIS. The results demonstrated the performance comparison of the two systems and the advantages of using Sugeno- type over Mamdani-type.

    4
    17197
    Recommender Systems Using Ensemble Techniques
    Abstract:

    This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.

    3
    17207
    Adaptive Dynamic Time Warping for Variable Structure Pattern Recognition
    Abstract:

    Pattern discovery from time series is of fundamental importance. Particularly, when information about the structure of a pattern is not complete, an algorithm to discover specific patterns or shapes automatically from the time series data is necessary. The dynamic time warping is a technique that allows local flexibility in aligning time series. Because of this, it is widely used in many fields such as science, medicine, industry, finance and others. However, a major problem of the dynamic time warping is that it is not able to work with structural changes of a pattern. This problem arises when the structure is influenced by noise, which is a common thing in practice for almost every application. This paper addresses this problem by means of developing a novel technique called adaptive dynamic time warping.

    2
    17226
    Video-Based Face Recognition Based On State-Space Model
    Abstract:

    This paper proposes a video-based framework for face recognition to identify which faces appear in a video sequence. Our basic idea is like a tracking task - to track a selection of person candidates over time according to the observing visual features of face images in video frames. Hence, we employ the state-space model to formulate video-based face recognition by dividing this problem into two parts: the likelihood and the transition measures. The likelihood measure is to recognize whose face is currently being observed in video frames, for which two-dimensional linear discriminant analysis is employed. The transition measure estimates the probability of changing from an incorrect recognition at the previous stage to the correct person at the current stage. Moreover, extra nodes associated with head nodes are incorporated into our proposed state-space model. The experimental results are also provided to demonstrate the robustness and efficiency of our proposed approach.

    1
    9997167
    Enhanced Approaches to Rectify the Noise, Illumination and Shadow Artifacts
    Abstract:

    Enhancing the quality of two dimensional signals is one of the most important factors in the fields of video surveillance and computer vision. Usually in real-life video surveillance, false detection occurs due to the presence of random noise, illumination and shadow artifacts. The detection methods based on background subtraction faces several problems in accurately detecting objects in realistic environments: In this paper, we propose a noise removal algorithm using neighborhood comparison method with thresholding. The illumination variations correction is done in the detected foreground objects by using an amalgamation of techniques like homomorphic decomposition, curvelet transformation and gamma adjustment operator. Shadow is removed using chromaticity estimator with local relation estimator. Results are compared with the existing methods and prove as high robustness in the video surveillance.