Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 22

Computer, Electrical, Automation, Control and Information Engineering

  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 22
    691
    Enhancing the Error-Correcting Performance of LDPC Codes through an Efficient Use of Decoding Iterations
    Abstract:

    The decoding of Low-Density Parity-Check (LDPC) codes is operated over a redundant structure known as the bipartite graph, meaning that the full set of bit nodes is not absolutely necessary for decoder convergence. In 2008, Soyjaudah and Catherine designed a recovery algorithm for LDPC codes based on this assumption and showed that the error-correcting performance of their codes outperformed conventional LDPC Codes. In this work, the use of the recovery algorithm is further explored to test the performance of LDPC codes while the number of iterations is progressively increased. For experiments conducted with small blocklengths of up to 800 bits and number of iterations of up to 2000, the results interestingly demonstrate that contrary to conventional wisdom, the error-correcting performance keeps increasing with increasing number of iterations.

    21
    994
    Autonomous Robots- Visual Perception in Underground Terrains Using Statistical Region Merging
    Abstract:
    Robots- visual perception is a field that is gaining increasing attention from researchers. This is partly due to emerging trends in the commercial availability of 3D scanning systems or devices that produce a high information accuracy level for a variety of applications. In the history of mining, the mortality rate of mine workers has been alarming and robots exhibit a great deal of potentials to tackle safety issues in mines. However, an effective vision system is crucial to safe autonomous navigation in underground terrains. This work investigates robots- perception in underground terrains (mines and tunnels) using statistical region merging (SRM) model. SRM reconstructs the main structural components of an imagery by a simple but effective statistical analysis. An investigation is conducted on different regions of the mine, such as the shaft, stope and gallery, using publicly available mine frames, with a stream of locally captured mine images. An investigation is also conducted on a stream of underground tunnel image frames, using the XBOX Kinect 3D sensors. The Kinect sensors produce streams of red, green and blue (RGB) and depth images of 640 x 480 resolution at 30 frames per second. Integrating the depth information to drivability gives a strong cue to the analysis, which detects 3D results augmenting drivable and non-drivable regions in 2D. The results of the 2D and 3D experiment with different terrains, mines and tunnels, together with the qualitative and quantitative evaluation, reveal that a good drivable region can be detected in dynamic underground terrains.
    20
    2326
    Making Data Structures and Algorithms more Understandable by Programming Sudoku the Human Way
    Authors:
    Abstract:
    Data Structures and Algorithms is a module in most Computer Science or Information Technology curricula. It is one of the modules most students identify as being difficult. This paper demonstrates how programming a solution for Sudoku can make abstract concepts more concrete. The paper relates concepts of a typical Data Structures and Algorithms module to a step by step solution for Sudoku in a human type as opposed to a computer oriented solution.
    19
    2901
    A Discrete Choice Modeling Approach to Modular Systems Design
    Abstract:
    The paper proposes an approach for design of modular systems based on original technique for modeling and formulation of combinatorial optimization problems. The proposed approach is described on the example of personal computer configuration design. It takes into account the existing compatibility restrictions between the modules and can be extended and modified to reflect different functional and users- requirements. The developed design modeling technique is used to formulate single objective nonlinear mixedinteger optimization tasks. The practical applicability of the developed approach is numerically tested on the basis of real modules data. Solutions of the formulated optimization tasks define the optimal configuration of the system that satisfies all compatibility restrictions and user requirements.
    18
    3122
    Evaluation of a PSO Approach for Optimum Design of a First-Order Controllers for TCP/AQM Systems
    Abstract:
    This paper presents a Particle Swarm Optimization (PSO) method for determining the optimal parameters of a first-order controller for TCP/AQM system. The model TCP/AQM is described by a second-order system with time delay. First, the analytical approach, based on the D-decomposition method and Lemma of Kharitonov, is used to determine the stabilizing regions of a firstorder controller. Second, the optimal parameters of the controller are obtained by the PSO algorithm. Finally, the proposed method is implemented in the Network Simulator NS-2 and compared with the PI controller.
    17
    3227
    Courses Pre-Required Visualization Using Force Directed Placement Technique
    Abstract:
    Visualizing “Courses – Pre – Required - Architecture" on the screen has proven to be useful and helpful for university actors and specially for students. In fact, these students can easily identify courses and their pre required, perceive the courses to follow in the future, and then can choose rapidly the appropriate course to register in. Given a set of courses and their prerequired, we present an algorithm for visualization a graph entitled “Courses-Pre-Required-Graph" that present courses and their prerequired in order to help students to recognize, lonely, what courses to take in the future and perceive the contain of all courses that they will study. Our algorithm using “Force Directed Placement" technique visualizes the “Courses-Pre-Required-Graph" in such way that courses are easily identifiable. The time complexity of our drawing algorithm is O (n2), where n is the number of courses in the “Courses-Pre-Required-Graph".
    16
    3360
    Easy-Interactive Ordering of the Pareto Optimal Set with Imprecise Weights
    Abstract:

    In the multi objective optimization, in the case when generated set of Pareto optimal solutions is large, occurs the problem to select of the best solution from this set. In this paper, is suggested a method to order of Pareto set. Ordering the Pareto optimal set carried out in conformity with the introduced distance function between each solution and selected reference point, where the reference point may be adjusted to represent the preferences of a decision making agent. Preference information about objective weights from a decision maker may be expressed imprecisely. The developed elicitation procedure provides an opportunity to obtain surrogate numerical weights for the objectives, and thus, to manage impreciseness of preference. The proposed method is a scalable to many objectives and can be used independently or as complementary to the various visualization techniques in the multidimensional case.

    15
    4674
    Fault Detection and Isolation using RBF Networks for Polymer Electrolyte Membrane Fuel Cell
    Abstract:

    This paper presents a new method of fault detection and isolation (FDI) for polymer electrolyte membrane (PEM) fuel cell (FC) dynamic systems under an open-loop scheme. This method uses a radial basis function (RBF) neural network to perform fault identification, classification and isolation. The novelty is that the RBF model of independent mode is used to predict the future outputs of the FC stack. One actuator fault, one component fault and three sensor faults have been introduced to the PEMFC systems experience faults between -7% to +10% of fault size in real-time operation. To validate the results, a benchmark model developed by Michigan University is used in the simulation to investigate the effect of these five faults. The developed independent RBF model is tested on MATLAB R2009a/Simulink environment. The simulation results confirm the effectiveness of the proposed method for FDI under an open-loop condition. By using this method, the RBF networks able to detect and isolate all five faults accordingly and accurately.

    14
    6698
    Precision Control of Single-Phase PWM Inverter Using M68HC11E Microcontroller
    Abstract:
    Induction motors are being used in greater numbers throughout a wide variety of industrial and commercial applications because it provides many benefits and reliable device to convert the electrical energy into mechanical motion. In some application it-s desired to control the speed of the induction motor. Because of the physics of the induction motor the preferred method of controlling its speed is to vary the frequency of the AC voltage driving the motor. In recent years, with the microcontroller incorporated into an appliance it becomes possible to use it to generate the variable frequency AC voltage to control the speed of the induction motor. This study investigates the microcontroller based variable frequency power inverter. the microcontroller is provide the variable frequency pulse width modulation (PWM) signal that control the applied voltage on the gate drive, which is provides the required PWM frequency with less harmonics at the output of the power inverter. The fully controlled bridge voltage source inverter has been implemented with semiconductors power devices isolated gate bipolar transistor (IGBT), and the PWM technique has been employed in this inverter to supply the motor with AC voltage. The proposed drive system for three & single phase power inverter is simulated using Matlab/Simulink. The Matlab Simulation Results for the proposed system were achieved with different SPWM. From the result a stable variable frequency inverter over wide range has been obtained and a good agreement has been found between the simulation and hardware of a microcontroller based single phase inverter.
    13
    7003
    Research on Hybrid Neural Network in Intrusion Detection System
    Abstract:

    This paper presents an intrusion detection system of hybrid neural network model based on RBF and Elman. It is used for anomaly detection and misuse detection. This model has the memory function .It can detect discrete and related aggressive behavior effectively. RBF network is a real-time pattern classifier, and Elman network achieves the memory ability for former event. Based on the hybrid model intrusion detection system uses DARPA data set to do test evaluation. It uses ROC curve to display the test result intuitively. After the experiment it proves this hybrid model intrusion detection system can effectively improve the detection rate, and reduce the rate of false alarm and fail.

    12
    8944
    Night-Time Traffic Light Detection Based On SVM with Geometric Moment Features
    Abstract:
    This paper presents an effective traffic lights detection method at the night-time. First, candidate blobs of traffic lights are extracted from RGB color image. Input image is represented on the dominant color domain by using color transform proposed by Ruta, then red and green color dominant regions are selected as candidates. After candidate blob selection, we carry out shape filter for noise reduction using information of blobs such as length, area, area of boundary box, etc. A multi-class classifier based on SVM (Support Vector Machine) applies into the candidates. Three kinds of features are used. We use basic features such as blob width, height, center coordinate, area, area of blob. Bright based stochastic features are also used. In particular, geometric based moment-s values between candidate region and adjacent region are proposed and used to improve the detection performance. The proposed system is implemented on Intel Core CPU with 2.80 GHz and 4 GB RAM and tested with the urban and rural road videos. Through the test, we show that the proposed method using PF, BMF, and GMF reaches up to 93 % of detection rate with computation time of in average 15 ms/frame.
    11
    12614
    Enhanced Conference Organization Based On Correlation of Web Information and Ontology Based Expertise Search
    Abstract:
    From the importance of the conference and its constructive role in the studies discussion, there must be a strong organization that allows the exploitation of the discussions in opening new horizons. The vast amount of information scattered across the web, make it difficult to find experts, who can play a prominent role in organizing conferences. In this paper we proposed a new approach of extracting researchers- information from various Web resources and correlating them in order to confirm their correctness. As a validator of this approach, we propose a service that will be useful to set up a conference. Its main objective is to find appropriate experts, as well as the social events for a conference. For this application we us Semantic Web technologies like RDF and ontology to represent the confirmed information, which are linked to another ontology (skills ontology) that are used to present and compute the expertise.
    10
    13596
    Stereotype Student Model for an Adaptive e-Learning System
    Abstract:
    This paper describes a concept of stereotype student model in adaptive knowledge acquisition e-learning system. Defined knowledge stereotypes are based on student's proficiency level and on Bloom's knowledge taxonomy. The teacher module is responsible for the whole adaptivity process: the automatic generation of courseware elements, their dynamic selection and sorting, as well as their adaptive presentation using templates for statements and questions. The adaptation of courseware is realized according to student-s knowledge stereotype.
    9
    9997081
    Design of Low Power and High Speed Digital IIR Filter in 45nm with Optimized CSA for Digital Signal Processing Applications
    Abstract:

    In this paper, a design methodology to implement low-power and high-speed 2nd order recursive digital Infinite Impulse Response (IIR) filter has been proposed. Since IIR filters suffer from a large number of constant multiplications, the proposed method replaces the constant multiplications by using addition/subtraction and shift operations. The proposed new 6T adder cell is used as the Carry-Save Adder (CSA) to implement addition/subtraction operations in the design of recursive section IIR filter to reduce the propagation delay. Furthermore, high-level algorithms designed for the optimization of the number of CSA blocks are used to reduce the complexity of the IIR filter. The DSCH3 tool is used to generate the schematic of the proposed 6T CSA based shift-adds architecture design and it is analyzed by using Microwind CAD tool to synthesize low-complexity and high-speed IIR filters. The proposed design outperforms in terms of power, propagation delay, area and throughput when compared with MUX-12T, MCIT-7T based CSA adder filter design. It is observed from the experimental results that the proposed 6T based design method can find better IIR filter designs in terms of power and delay than those obtained by using efficient general multipliers.

    8
    14496
    High Level Synthesis of Digital Filters Based On Sub-Token Forwarding
    Abstract:
    High level synthesis (HLS) is a process which generates register-transfer level design for digital systems from behavioral description. There are many HLS algorithms and commercial tools. However, most of these algorithms consider a behavioral description for the system when a single token is presented to the system. This approach does not exploit extra hardware efficiently, especially in the design of digital filters where common operations may exist between successive tokens. In this paper, we modify the behavioral description to process multiple tokens in parallel. However, this approach is unlike the full processing that requires full hardware replication. It exploits the presence of common operations between successive tokens. The performance of the proposed approach is better than sequential processing and approaches that of full parallel processing as the hardware resources are increased.
    7
    15156
    Semantic Markup for Web Applications
    Abstract:
    In this paper we would like to introduce some of the best practices of using semantic markup and its significance in the success of web applications. Search engines are one of the best ways to reach potential customers and are some of the main indicators of web sites' fruitfulness. We will introduce the most important semantic vocabularies which are used by Google and Yahoo. Afterwards, we will explain the process of semantic markup implementation and its significance for search engines and other semantic markup consumers. We will describe techniques for slow conceiving RDFa markup to our web application for collecting Call for papers (CFP) announcements.
    6
    9997079
    An Evaluation of Software Connection Methods for Heterogeneous Sensor Networks
    Abstract:

    The transfer rate of messages in distributed sensor network applications is a critical factor in a system's performance. The Sensor Abstraction Layer (SAL) is one such system. SAL is a middleware integration platform for abstracting sensor specific technology in order to integrate heterogeneous types of sensors in a network. SAL uses Java Remote Method Invocation (RMI) as its connection method, which has unsatisfying transfer rates, especially for streaming data. This paper analyses different connection methods to optimize data transmission in SAL by replacing RMI. Our results show that the most promising Java-based connections were frameworks for Java New Input/Output (NIO) including Apache MINA, JBoss Netty, and xSocket. A test environment was implemented to evaluate each respective framework based on transfer rate, resource usage, and scalability. Test results showed the most suitable connection method to improve data transmission in SAL JBoss Netty as it provides a performance enhancement of 68%.

    5
    9996934
    Query Reformulation Guided by External Resource for Information Retrieval
    Abstract:

    Reformulating the user query is a technique that aims to improve the performance of an Information Retrieval System (IRS) in terms of precision and recall. This paper tries to evaluate the technique of query reformulation guided by an external resource for Arabic texts. To do this, various precision and recall measures were conducted and two corpora with different external resources like Arabic WordNet (AWN) and the Arabic Dictionary (thesaurus) of Meaning (ADM) were used. Examination of the obtained results will allow us to measure the real contribution of this reformulation technique in improving the IRS performance.

    4
    9997045
    Empirical Evaluation of Performance Optimization Techniques Used in Mobile Applications
    Abstract:

    Mobile application development is different from regular application development due to the hardware resource limitations existed in the mobile platforms. In the mobile environment, the application needs to be optimized by the developer to produce optimal software with least overhead. This study discussed about performance optimization techniques that are employed in general application development, and how such techniques are performing on mobile platforms through some empirical evaluations on a mobile emulator, Nokia X3-02 and Nokia C5-03devices. The scope of the work is only confined to mobile platform based on Java Mobile edition architecture. The empirical results showed that techniques such as loop unrolling, dependency chain, and linearized getter and setter performed better by a factor of 3 to 7. Whereas declaration and initialization on the same line or separate line did not improve the performance.

    3
    9997047
    Simultaneous Clustering and Feature Selection Method for Gene Expression Data
    Abstract:

    Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this work K-Means algorithms has been applied for clustering of Gene Expression Data. Further, rough set based Quick reduct algorithm has been applied for each cluster in order to select the most similar genes having high correlation. Then the ACV measure is used to evaluate the refined clusters and classification is used to evaluate the proposed method. They could identify compact clusters with feature selection method used to genes are selected.

    2
    9997051
    Localization of Anatomical Landmarks in Head CT Images for Image to Patient Registration
    Abstract:

    The use of anatomical landmarks as a basis for image to patient registration is appealing because the registration may be performed retrospectively. We have previously proposed the use of two anatomical soft tissue landmarks of the head, the canthus (corner of the eye) and the tragus (a small, pointed, cartilaginous flap of the ear), as a registration basis for an automated CT image to patient registration system, and described their localization in patient space using close range photogrammetry. In this paper, the automatic localization of these landmarks in CT images, based on their curvature saliency and using a rule based system that incorporates prior knowledge of their characteristics, is described. Existing approaches to landmark localization in CT images are predominantly semi-automatic and primarily for localizing internal landmarks. To validate our approach, the positions of the landmarks localized automatically and manually in near isotropic CT images of 102 patients were compared. The average difference was 1.2mm (std = 0.9mm, max = 4.5mm) for the medial canthus and 0.8mm (std = 0.6mm, max = 2.6mm) for the tragus. The medial canthus and tragus can be automatically localized in CT images, with performance comparable to manual localization, based on the approach presented.

    1
    9997164
    A Model for Test Case Selection in the Software-Development Life Cycle
    Authors:
    Abstract:

    Software maintenance is one of the essential processes of Software-Development Life Cycle. The main philosophies of retaining software concern the improvement of errors, the revision of codes, the inhibition of future errors, and the development in piece and capacity. While the adjustment has been employing, the software structure has to be retested to an upsurge a level of assurance that it will be prepared due to the requirements. According to this state, the test cases must be considered for challenging the revised modules and the whole software. A concept of resolving this problem is ongoing by regression test selection such as the retest-all selections, random/ad-hoc selection and the safe regression test selection. Particularly, the traditional techniques concern a mapping between the test cases in a test suite and the lines of code it executes. However, there are not only the lines of code as one of the requirements that can affect the size of test suite but including the number of functions and faulty versions. Therefore, a model for test case selection is developed to cover those three requirements by the integral technique which can produce the smaller size of the test cases when compared with the traditional regression selection techniques.