Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 18

Computer, Electrical, Automation, Control and Information Engineering

  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 18
    547
    Energy Efficient Clustering and Data Aggregation in Wireless Sensor Networks
    Abstract:
    Wireless Sensor Networks (WSNs) are wireless networks consisting of number of tiny, low cost and low power sensor nodes to monitor various physical phenomena like temperature, pressure, vibration, landslide detection, presence of any object, etc. The major limitation in these networks is the use of nonrechargeable battery having limited power supply. The main cause of energy consumption WSN is communication subsystem. This paper presents an efficient grid formation/clustering strategy known as Grid based level Clustering and Aggregation of Data (GCAD). The proposed clustering strategy is simple and scalable that uses low duty cycle approach to keep non-CH nodes into sleep mode thus reducing energy consumption. Simulation results demonstrate that our proposed GCAD protocol performs better in various performance metrics.
    17
    1363
    Texture Feature-Based Language Identification Using Wavelet-Domain BDIP and BVLC Features and FFT Feature
    Abstract:
    In this paper, we propose a texture feature-based language identification using wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features and FFT (fast Fourier transform) feature. In the proposed method, wavelet subbands are first obtained by wavelet transform from a test image and denoised by Donoho-s soft-thresholding. BDIP and BVLC operators are next applied to the wavelet subbands. FFT blocks are also obtained by 2D (twodimensional) FFT from the blocks into which the test image is partitioned. Some significant FFT coefficients in each block are selected and magnitude operator is applied to them. Moments for each subband of BDIP and BVLC and for each magnitude of significant FFT coefficients are then computed and fused into a feature vector. In classification, a stabilized Bayesian classifier, which adopts variance thresholding, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method with the three operations yields excellent language identification even with rather low feature dimension.
    16
    1475
    A Learning-Community Recommendation Approach for Web-Based Cooperative Learning
    Abstract:

    Cooperative learning has been defined as learners working together as a team to solve a problem to complete a task or to accomplish a common goal, which emphasizes the importance of interactions among members to promote the whole learning performance. With the popularity of society networks, cooperative learning is no longer limited to traditional classroom teaching activities. Since society networks facilitate to organize online learners, to establish common shared visions, and to advance learning interaction, the online community and online learning community have triggered the establishment of web-based societies. Numerous research literatures have indicated that the collaborative learning community is a critical issue to enhance learning performance. Hence, this paper proposes a learning community recommendation approach to facilitate that a learner joins the appropriate learning communities, which is based on k-nearest neighbor (kNN) classification. To demonstrate the viability of the proposed approach, the proposed approach is implemented for 117 students to recommend learning communities. The experimental results indicate that the proposed approach can effectively recommend appropriate learning communities for learners.

    15
    2904
    The Use of Recommender Systems in Decision Support–A Case Study on Used Car Dealers
    Abstract:
    This research focuses on the use of a recommender system in decision support by means of a used car dealer case study in Bangkok Metropolitan. The goal is to develop an effective used car purchasing system for dealers based on the above premise. The underlying principle rests on content-based recommendation from a set of usability surveys. A prototype was developed to conduct buyers- survey selected from 5 experts and 95 general public. The responses were analyzed to determine the mean and standard deviation of buyers- preference. The results revealed that both groups were in favor of using the proposed system to assist their buying decision. This indicates that the proposed system is meritorious to used car dealers.
    14
    17355
    Web Application Security, Attacks and Mitigation
    Abstract:

    Today’s technology is heavily dependent on web applications. Web applications are being accepted by users at a very rapid pace. These have made our work efficient. These include webmail, online retail sale, online gaming, wikis, departure and arrival of trains and flights and list is very long. These are developed in different languages like PHP, Python, C#, ASP.NET and many more by using scripts such as HTML and JavaScript. Attackers develop tools and techniques to exploit web applications and legitimate websites. This has led to rise of web application security; which can be broadly classified into Declarative Security and Program Security. The most common attacks on the applications are by SQL Injection and XSS which give access to unauthorized users who totally damage or destroy the system. This paper presents a detailed literature description and analysis on Web Application Security, examples of attacks and steps to mitigate the vulnerabilities.

    13
    4536
    A Quantum Algorithm of Constructing Image Histogram
    Abstract:
    Histogram plays an important statistical role in digital image processing. However, the existing quantum image models are deficient to do this kind of image statistical processing because different gray scales are not distinguishable. In this paper, a novel quantum image representation model is proposed firstly in which the pixels with different gray scales can be distinguished and operated simultaneously. Based on the new model, a fast quantum algorithm of constructing histogram for quantum image is designed. Performance comparison reveals that the new quantum algorithm could achieve an approximately quadratic speedup than the classical counterpart. The proposed quantum model and algorithm have significant meanings for the future researches of quantum image processing.
    12
    5362
    OSGi in Cloud Environments
    Abstract:
    This paper deals with the combination of OSGi and cloud computing. Both technologies are mainly placed in the field of distributed computing. Therefore, it is discussed how different approaches from different institutions work. In addition, the approaches are compared to each other.
    11
    6965
    A Hybrid Approach for Color Image Quantization Using K-means and Firefly Algorithms
    Abstract:
    Color Image quantization (CQ) is an important problem in computer graphics, image and processing. The aim of quantization is to reduce colors in an image with minimum distortion. Clustering is a widely used technique for color quantization; all colors in an image are grouped to small clusters. In this paper, we proposed a new hybrid approach for color quantization using firefly algorithm (FA) and K-means algorithm. Firefly algorithm is a swarmbased algorithm that can be used for solving optimization problems. The proposed method can overcome the drawbacks of both algorithms such as the local optima converge problem in K-means and the early converge of firefly algorithm. Experiments on three commonly used images and the comparison results shows that the proposed algorithm surpasses both the base-line technique k-means clustering and original firefly algorithm.
    10
    7473
    Object Recognition on Horse Riding Simulator System
    Abstract:

    In recent years, IT convergence technology has been developed to get creative solution by combining robotics or sports science technology. Object detection and recognition have mainly applied to sports science field that has processed by recognizing face and by tracking human body. But object detection and recognition using vision sensor is challenge task in real world because of illumination. In this paper, object detection and recognition using vision sensor applied to sports simulator has been introduced. Face recognition has been processed to identify user and to update automatically a person athletic recording. Human body has tracked to offer a most accurate way of riding horse simulator. Combined image processing has been processed to reduce illumination adverse affect because illumination has caused low performance in detection and recognition in real world application filed. Face has recognized using standard face graph and human body has tracked using pose model, which has composed of feature nodes generated diverse face and pose images. Face recognition using Gabor wavelet and pose recognition using pose graph is robust to real application. We have simulated using ETRI database, which has constructed on horse riding simulator.

    9
    7795
    Energy Efficient Cooperative Caching in WSN
    Abstract:
    Wireless sensor networks (WSNs) consist of number of tiny, low cost and low power sensor nodes to monitor some physical phenomenon. The major limitation in these networks is the use of non-rechargeable battery having limited power supply. The main cause of energy consumption in such networks is communication subsystem. This paper presents an energy efficient Cluster Cooperative Caching at Sensor (C3S) based upon grid type clustering. Sensor nodes belonging to the same cluster/grid form a cooperative cache system for the node since the cost for communication with them is low both in terms of energy consumption and message exchanges. The proposed scheme uses cache admission control and utility based data replacement policy to ensure that more useful data is retained in the local cache of a node. Simulation results demonstrate that C3S scheme performs better in various performance metrics than NICoCa which is existing cooperative caching protocol for WSNs.
    8
    9982
    Efficient DTW-Based Speech Recognition System for Isolated Words of Arabic Language
    Abstract:
    Despite the fact that Arabic language is currently one of the most common languages worldwide, there has been only a little research on Arabic speech recognition relative to other languages such as English and Japanese. Generally, digital speech processing and voice recognition algorithms are of special importance for designing efficient, accurate, as well as fast automatic speech recognition systems. However, the speech recognition process carried out in this paper is divided into three stages as follows: firstly, the signal is preprocessed to reduce noise effects. After that, the signal is digitized and hearingized. Consequently, the voice activity regions are segmented using voice activity detection (VAD) algorithm. Secondly, features are extracted from the speech signal using Mel-frequency cepstral coefficients (MFCC) algorithm. Moreover, delta and acceleration (delta-delta) coefficients have been added for the reason of improving the recognition accuracy. Finally, each test word-s features are compared to the training database using dynamic time warping (DTW) algorithm. Utilizing the best set up made for all affected parameters to the aforementioned techniques, the proposed system achieved a recognition rate of about 98.5% which outperformed other HMM and ANN-based approaches available in the literature.
    7
    10655
    Phase Control Array Synthesis Using Constrained Accelerated Particle Swarm Optimization
    Abstract:
    In this paper, the phase control antenna array synthesis is presented. The problem is formulated as a constrained optimization problem that imposes nulls with prescribed level while maintaining the sidelobe at a prescribed level. For efficient use of the algorithm memory, compared to the well known Particle Swarm Optimization (PSO), the Accelerated Particle Swarm Optimization (APSO) is used to estimate the phase parameters of the synthesized array. The objective function is formed using a main objective and set of constraints with penalty factors that measure the violation of each feasible solution in the search space to each constraint. In this case the obtained feasible solution is guaranteed to satisfy all the constraints. Simulation results have shown significant performance increases and a decreased randomness in the parameter search space compared to a single objective conventional particle swarm optimization.
    6
    11077
    Determination of Severe Loading Condition at Critical System Cascading Collapse Considering the Effect of Protection System Hidden Failure
    Abstract:
    Hidden failure in a protection system has been recognized as one of the main reasons which may cause to a power system instability leading to a system cascading collapse. This paper presents a computationally systematic approach used to obtain the estimated average probability of a system cascading collapse by considering the effect of probability hidden failure in a protection system. The estimated average probability of a system cascading collapse is then used to determine the severe loading condition contributing to the higher risk of critical system cascading collapse. This information is essential to the system utility since it will assist the operator to determine the highest point of increased system loading condition prior to the event of critical system cascading collapse.
    5
    11335
    Seat Assignment Problem Optimization
    Abstract:
    In this paper the optimality of the solution of an existing real word assignment problem known as the seat assignment problem using Seat Assignment Method (SAM) is discussed. SAM is the newly driven method from three existing methods, Hungarian Method, Northwest Corner Method and Least Cost Method in a special way that produces the easiness & fairness among all methods that solve the seat assignment problem.
    4
    13220
    Intrusion Detection Using a New Particle Swarm Method and Support Vector Machines
    Abstract:
    Intrusion detection is a mechanism used to protect a system and analyse and predict the behaviours of system users. An ideal intrusion detection system is hard to achieve due to nonlinearity, and irrelevant or redundant features. This study introduces a new anomaly-based intrusion detection model. The suggested model is based on particle swarm optimisation and nonlinear, multi-class and multi-kernel support vector machines. Particle swarm optimisation is used for feature selection by applying a new formula to update the position and the velocity of a particle; the support vector machine is used as a classifier. The proposed model is tested and compared with the other methods using the KDD CUP 1999 dataset. The results indicate that this new method achieves better accuracy rates than previous methods.
    3
    13527
    Performance Evaluation of a Limited Round-Robin System
    Abstract:
    Performance of a limited Round-Robin (RR) rule is studied in order to clarify the characteristics of a realistic sharing model of a processor. Under the limited RR rule, the processor allocates to each request a fixed amount of time, called a quantum, in a fixed order. The sum of the requests being allocated these quanta is kept below a fixed value. Arriving requests that cannot be allocated quanta because of such a restriction are queued or rejected. Practical performance measures, such as the relationship between the mean sojourn time, the mean number of requests, or the loss probability and the quantum size are evaluated via simulation. In the evaluation, the requested service time of an arriving request is converted into a quantum number. One of these quanta is included in an RR cycle, which means a series of quanta allocated to each request in a fixed order. The service time of the arriving request can be evaluated using the number of RR cycles required to complete the service, the number of requests receiving service, and the quantum size. Then an increase or decrease in the number of quanta that are necessary before service is completed is reevaluated at the arrival or departure of other requests. Tracking these events and calculations enables us to analyze the performance of our limited RR rule. In particular, we obtain the most suitable quantum size, which minimizes the mean sojourn time, for the case in which the switching time for each quantum is considered.
    2
    13742
    First Aid Application on Mobile Device
    Abstract:
    An accident is an unexpected and unplanned situation that happens and affects human in a negative outcome. The accident can cause an injury to a human biological organism. Thus, the provision of initial care for an illness or injury is very important move to prepare the patients/victims before sending to the doctor. In this paper, a First Aid Application is developed to give some directions for preliminary taking care of patient/victim via Android mobile device. Also, the navigation function using Google Maps API is implemented in this paper for searching a suitable path to the nearest hospital. Therefore, in the emergency case, this function can be activated and navigate patients/victims to the hospital with the shortest path.
    1
    15081
    A Fast HRRP Synthesis Algorithm with Sensing Dictionary in GTD Model
    Abstract:

    In the paper, a fast high-resolution range profile synthetic algorithm called orthogonal matching pursuit with sensing dictionary (OMP-SD) is proposed. It formulates the traditional HRRP synthetic to be a sparse approximation problem over redundant dictionary. As it employs a priori that the synthetic range profile (SRP) of targets are sparse, SRP can be accomplished even in presence of data lost. Besides, the computation complexity decreases from O(MNDK) flops for OMP to O(M(N + D)K) flops for OMP-SD by introducing sensing dictionary (SD). Simulation experiments illustrate its advantages both in additive white Gaussian noise (AWGN) and noiseless situation, respectively.