Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 51

Electrical, Computer, Energetic, Electronic and Communication Engineering

  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 51
    Adaptive Radio Resource Allocation for Multiple Traffic OFDMA Broadband Wireless Access System
    In this paper, an adaptive radio resource allocation (RRA) algorithm applying to multiple traffic OFDMA system is proposed, which distributes sub-carrier and loading bits among users according to their different QoS requirements and traffic class. By classifying and prioritizing the users based on their traffic characteristic and ensuring resource for higher priority users, the scheme decreases tremendously the outage probability of the users requiring a real time transmission without impact on the spectrum efficiency of system, as well as the outage probability of data users is not increased compared with the RRA methods published.
    Multi-board Run-time Reconfigurable Implementation of Intrinsic Evolvable Hardware
    A multi-board run-time reconfigurable (MRTR) system for evolvable hardware (EHW) is introduced with the aim to implement on hardware the bidirectional incremental evolution (BIE) method. The main features of this digital intrinsic EHW solution rely on the multi-board approach, the variable chromosome length management and the partial configuration of the reconfigurable circuit. These three features provide a high scalability to the solution. The design has been written in VHDL with the concern of not being platform dependant in order to keep a flexibility factor as high as possible. This solution helps tackling the problem of evolving complex task on digital configurable support.
    A Novel FFT-Based Frequency Offset Estimator for OFDM Systems

    This paper proposes a novel frequency offset (FO) estimator for orthogonal frequency division multiplexing. Simplicity is most significant feature of this algorithm and can be repeated to achieve acceptable accuracy. Also fractional and integer part of FO is estimated jointly with use of the same algorithm. To do so, instead of using conventional algorithms that usually use correlation function, we use DFT of received signal. Therefore, complexity will be reduced and we can do synchronization procedure by the same hardware that is used to demodulate OFDM symbol. Finally, computer simulation shows that the accuracy of this method is better than other conventional methods.

    A Novel Genetic Algorithm Designed for Hardware Implementation

    A new genetic algorithm, termed the 'optimum individual monogenetic genetic algorithm' (OIMGA), is presented whose properties have been deliberately designed to be well suited to hardware implementation. Specific design criteria were to ensure fast access to the individuals in the population, to keep the required silicon area for hardware implementation to a minimum and to incorporate flexibility in the structure for the targeting of a range of applications. The first two criteria are met by retaining only the current optimum individual, thereby guaranteeing a small memory requirement that can easily be stored in fast on-chip memory. Also, OIMGA can be easily reconfigured to allow the investigation of problems that normally warrant either large GA populations or individuals many genes in length. Local convergence is achieved in OIMGA by retaining elite individuals, while population diversity is ensured by continually searching for the best individuals in fresh regions of the search space. The results given in this paper demonstrate that both the performance of OIMGA and its convergence time are superior to those of a range of existing hardware GA implementations.

    PetriNets Manipulation to Reduce Roaming Duration: Criterion to Improve Handoff Management
    IETF RFC 2002 originally introduced the wireless Mobile-IP protocol to support portable IP addresses for mobile devices that often change their network access points to the Internet. The inefficiency of this protocol mainly within the handoff management produces large end-to-end packet delays, during registration process, and further degrades the system efficiency due to packet losses between subnets. The criterion to initiate a simple and fast full-duplex connection between the home agent and foreign agent, to reduce the roaming duration, is a very important issue to be considered by a work in this paper. State-transition Petri-Nets of the modeling scenario-based CIA: communication inter-agents procedure as an extension to the basic Mobile-IP registration process was designed and manipulated. The heuristic of configuration file during practical Setup session for registration parameters, on Cisco platform Router-1760 using IOS 12.3 (15)T is created. Finally, stand-alone performance simulations results from Simulink Matlab, within each subnet and also between subnets, are illustrated for reporting better end-to-end packet delays. Results verified the effectiveness of our Mathcad analytical manipulation and experimental implementation. It showed lower values of end-to-end packet delay for Mobile-IP using CIA procedure. Furthermore, it reported packets flow between subnets to improve packet losses between subnets.
    PAPR Reduction Method for OFDM Signalby Using Dummy Sub-carriers
    One of the disadvantages of using OFDM is the larger peak to averaged power ratio (PAPR) in its time domain signal. The larger PAPR signal would course the fatal degradation of bit error rate performance (BER) due to the inter-modulation noise in the nonlinear channel. This paper proposes an improved DSI (Dummy Sequence Insertion) method, which can achieve the better PAPR and BER performances. The feature of proposed method is to optimize the phase of each dummy sub-carrier so as to reduce the PAPR performance by changing all predetermined phase coefficients in the time domain signal, which is calculated for data sub-carriers and dummy sub-carriers separately. To achieve the better PAPR performance, this paper also proposes to employ the time-frequency domain swapping algorithm for fine adjustment of phase coefficient of the dummy subcarriers, which can achieve the less complexity of processing and achieves the better PAPR and BER performances than those for the conventional DSI method. This paper presents various computer simulation results to verify the effectiveness of proposed method as comparing with the conventional methods in the non-linear channel.
    Automatic Recognition of Emotionally Coloured Speech
    Emotion in speech is an issue that has been attracting the interest of the speech community for many years, both in the context of speech synthesis as well as in automatic speech recognition (ASR). In spite of the remarkable recent progress in Large Vocabulary Recognition (LVR), it is still far behind the ultimate goal of recognising free conversational speech uttered by any speaker in any environment. Current experimental tests prove that using state of the art large vocabulary recognition systems the error rate increases substantially when applied to spontaneous/emotional speech. This paper shows that recognition rate for emotionally coloured speech can be improved by using a language model based on increased representation of emotional utterances.
    Words Reordering based on Statistical Language Model
    There are multiple reasons to expect that detecting the word order errors in a text will be a difficult problem, and detection rates reported in the literature are in fact low. Although grammatical rules constructed by computer linguists improve the performance of grammar checker in word order diagnosis, the repairing task is still very difficult. This paper presents an approach for repairing word order errors in English text by reordering words in a sentence and choosing the version that maximizes the number of trigram hits according to a language model. The novelty of this method concerns the use of an efficient confusion matrix technique for reordering the words. The comparative advantage of this method is that works with a large set of words, and avoids the laborious and costly process of collecting word order errors for creating error patterns.
    Application of Hermite-Rodriguez Functions to Pulse Shaping Analog Filter Design
    In this paper, we consider the design of pulse shaping filter using orthogonal Hermite-Rodriguez basis functions. The pulse shaping filter design problem has been formulated and solved as a quadratic programming problem with linear inequality constraints. Compared with the existing approaches reported in the literature, the use of Hermite-Rodriguez functions offers an effective alternative to solve the constrained filter synthesis problem. This is demonstrated through a numerical example which is concerned with the design of an equalization filter for a digital transmission channel.
    Electromagnetic Imaging of Inhomogeneous Dielectric Cylinders Buried in a Slab Mediumby TE Wave Illumination
    The electromagnetic imaging of inhomogeneous dielectric cylinders buried in a slab medium by transverse electric (TE) wave illumination is investigated. Dielectric cylinders of unknown permittivities are buried in second space and scattered a group of unrelated waves incident from first space where the scattered field is recorded. By proper arrangement of the various unrelated incident fields, the difficulties of ill-posedness and nonlinearity are circumvented, and the permittivity distribution can be reconstructed through simple matrix operations. The algorithm is based on the moment method and the unrelated illumination method. Numerical results are given to demonstrate the capability of the inverse algorithm. Good reconstruction is obtained even in the presence of additive Gaussian random noise in measured data. In addition, the effect of noise on the reconstruction result is also investigated.
    Downlink Scheduling and Radio Resource Allocation in Adaptive OFDMA Wireless Communication Systems for User-Individual QoS
    In this paper, we address the problem of adaptive radio resource allocation (RRA) and packet scheduling in the downlink of a cellular OFDMA system, and propose a downlink multi-carrier proportional fair (MPF) scheduler and its joint with adaptive RRA algorithm to distribute radio resources among multiple users according to their individual QoS requirements. The allocation and scheduling objective is to maximize the total throughput, while at the same time maintaining the fairness among users. The simulation results demonstrate that the methods presented provide for user more explicit fairness relative to RRA algorithm, but the joint scheme achieves the higher sum-rate capacity with flexible parameters setting compared with MPF scheduler.
    Home-Network Security Model in Ubiquitous Environment
    Social interest and demand on Home-Network has been increasing greatly. Although various services are being introduced to respond to such demands, they can cause serious security problems when linked to the open network such as Internet. This paper reviews the security requirements to protect the service users with assumption that the Home-Network environment is connected to Internet and then proposes the security model based on the requirement. The proposed security model can satisfy most of the requirements and further can be dynamically applied to the future ubiquitous Home-Networks.
    Adaptive Subchannel Allocation for MC-CDMA System
    Multicarrier code-division multiple-access is one of the effective techniques to gain its multiple access capability, robustness against fading, and to mitigate the ISI. In this paper, we propose an improved mulcarrier CDMA system with adaptive subchannel allocation. We analyzed the performance of our proposed system in frequency selective fading environment with narrowband interference existing and compared it with that of parallel transmission over many subchannels (namely, conventional MC-CDMA scheme) and DS-CDMA system. Simulation results show that adaptive subchannel allocation scheme, when used in conventional multicarrier CDMA system, the performance will be greatly improved.
    Models to Customise Web Service Discovery Result using Static and Dynamic Parameters
    This paper presents three models which enable the customisation of Universal Description, Discovery and Integration (UDDI) query results, based on some pre-defined and/or real-time changing parameters. These proposed models detail the requirements, design and techniques which make ranking of Web service discovery results from a service registry possible. Our contribution is two fold: First, we present an extension to the UDDI inquiry capabilities. This enables a private UDDI registry owner to customise or rank the query results, based on its business requirements. Second, our proposal utilises existing technologies and standards which require minimal changes to existing UDDI interfaces or its data structures. We believe these models will serve as valuable reference for enhancing the service discovery methods within a private UDDI registry environment.
    Various Speech Processing Techniques For Speech Compression And Recognition
    Years of extensive research in the field of speech processing for compression and recognition in the last five decades, resulted in a severe competition among the various methods and paradigms introduced. In this paper we include the different representations of speech in the time-frequency and time-scale domains for the purpose of compression and recognition. The examination of these representations in a variety of related work is accomplished. In particular, we emphasize methods related to Fourier analysis paradigms and wavelet based ones along with the advantages and disadvantages of both approaches.
    Fuzzy Predictive Pursuit Guidance in the Homing Missiles
    A fuzzy predictive pursuit guidance is proposed as an alternative to the conventional methods. The purpose of this scheme is to obtain a stable and fast guidance. The noise effects must be reduced in homing missile guidance to get an accurate control. An aerodynamic missile model is simulated first and a fuzzy predictive pursuit control algorithm is applied to reduce the noise effects. The performance of this algorithm is compared with the performance of the classical proportional derivative control. Stability analysis of the proposed guidance method is performed and compared with the stability properties of other guidance methods. Simulation results show that the proposed method provides the satisfying performance.
    Bandwidth Allocation in Mobile ATM Cellular Networks
    Bandwidth allocation in wired network is less complex and to allocate bandwidth in wireless networks is complex and challenging, due to the mobility of source end system.This paper proposes a new approach to bandwidth allocation to higher and lower priority mobile nodes.In our proposal bandwidth allocation to new mobile node is based on bandwidth utilization of existing mobile nodes.The first section of the paper focuses on introduction to bandwidth allocation in wireless networks and presents the existing solutions available for allocation of bandwidth. The second section proposes the new solution for the bandwidth allocation to higher and lower priority nodes. Finally this paper ends with the analytical evaluation of the proposed solution.
    Modified Fuzzy PID Control for Networked Control Systems with Random Delays

    To deal with random delays in Networked Control System (NCS), Modified Fuzzy PID Controller is introduced in this paper to implement real-time control adaptively. Via adjusting the control signal dynamically, the system performance is improved. In this paper, the design process and the ultimate simulation results are represented. Finally, examples and corresponding comparisons prove the significance of this method.

    Impact of Metallic Furniture on UWB Channel Statistical Characteristics by BER
    The bit error rate (BER) performance for ultra-wide band (UWB) indoor communication with impact of metallic furniture is investigated. The impulse responses of different indoor environments for any transmitter and receiver location are computed by shooting and bouncing ray/image and inverse Fourier transform techniques. By using the impulse responses of these multipath channels, the BER performance for binary pulse amplitude modulation (BPAM) impulse radio UWB communication system are calculated. Numerical results have shown that the multi-path effect by the metallic cabinets is an important factor for BER performance. Also the outage probability for the UWB multipath environment with metallic cabinets is more serious (about 18%) than with wooden cabinets. Finally, it is worth noting that in these cases the present work provides not only comparative information but also quantitative information on the performance reduction.
    Speaker Identification using Neural Networks
    The speech signal conveys information about the identity of the speaker. The area of speaker identification is concerned with extracting the identity of the person speaking the utterance. As speech interaction with computers becomes more pervasive in activities such as the telephone, financial transactions and information retrieval from speech databases, the utility of automatically identifying a speaker is based solely on vocal characteristic. This paper emphasizes on text dependent speaker identification, which deals with detecting a particular speaker from a known population. The system prompts the user to provide speech utterance. System identifies the user by comparing the codebook of speech utterance with those of the stored in the database and lists, which contain the most likely speakers, could have given that speech utterance. The speech signal is recorded for N speakers further the features are extracted. Feature extraction is done by means of LPC coefficients, calculating AMDF, and DFT. The neural network is trained by applying these features as input parameters. The features are stored in templates for further comparison. The features for the speaker who has to be identified are extracted and compared with the stored templates using Back Propogation Algorithm. Here, the trained network corresponds to the output; the input is the extracted features of the speaker to be identified. The network does the weight adjustment and the best match is found to identify the speaker. The number of epochs required to get the target decides the network performance.
    Performance Analysis of QS-CDMA Systems
    In the paper, the performance of quasi-synchronous CDMA (QS-CDMA) system, which can allow an increased timing error in synchronized access, is discussed. Average BER performance of the system is analyzed in the condition of different access timing error and different asynchronous users by simulation in AWGN channel. The results show that QS-CDMA system is shown to have great performance gain over the asynchronous system when access timing error is within a few chips and asynchronous users is tolerable. However, with access timing error increasing and asynchronous users increasing, the performance of QS-CDMA will degrade. Also, we can determine the number of tolerable asynchronous users for different access timing error by simulation figures.
    Load Modeling for Power Flow and Transient Stability Computer Studies at BAKHTAR Network
    A method has been developed for preparing load models for power flow and stability. The load modeling (LOADMOD) computer software transforms data on load class mix, composition, and characteristics into the from required for commonly–used power flow and transient stability simulation programs. Typical default data have been developed for load composition and characteristics. This paper defines LOADMOD software and describes the dynamic and static load modeling techniques used in this software and results of initial testing for BAKHTAR power system.
    Comparison between Batteries and Fuel Cells for Photovoltaic System Backup

    Batteries and fuel cells contain a great potential to back up severe photovoltaic power fluctuations under inclement weather conditions. In this paper comparison between batteries and fuel cells is carried out in detail only for their PV power backup options, so their common attributes and different attributes is discussed. Then, the common and different attributes are compared; accordingly, the fuel cell is selected as the backup of Photovoltaic system. Finally, environmental evaluation of the selected hybrid plant was made in terms of plant-s land requirement and lifetime CO2 emissions, and then compared with that of the conventional fossilfuel power generating forms.

    Determination of Optimum Length of Framesand Number of Vectors to Compress ECG Signals
    In this study, to compress ECG signals, KLT (Karhunen- Loeve Transform) method has been used. The purpose of this method is to perform effective ECG coding by a correlation between the length of frames and the number of vectors of ECG signals.
    DEVS Modeling of Network Vulnerability
    As network components grow larger and more diverse, and as securing them on a host-by-host basis grow more difficult, more sites are turning to a network security model. We concentrate on controlling network access to various hosts and the services they offer, rather than on securing them one by one with a network security model. We present how the policy rules from vulnerabilities stored in SVDB (Simulation based Vulnerability Data Base) are inducted, and how to be used in PBN. In the network security environment, each simulation model is hierarchically designed by DEVS (Discrete EVent system Specification) formalism.
    Extracting Single Trial Visual Evoked Potentials using Selective Eigen-Rate Principal Components
    In single trial analysis, when using Principal Component Analysis (PCA) to extract Visual Evoked Potential (VEP) signals, the selection of principal components (PCs) is an important issue. We propose a new method here that selects only the appropriate PCs. We denote the method as selective eigen-rate (SER). In the method, the VEP is reconstructed based on the rate of the eigen-values of the PCs. When this technique is applied on emulated VEP signals added with background electroencephalogram (EEG), with a focus on extracting the evoked P3 parameter, it is found to be feasible. The improvement in signal to noise ratio (SNR) is superior to two other existing methods of PC selection: Kaiser (KSR) and Residual Power (RP). Though another PC selection method, Spectral Power Ratio (SPR) gives a comparable SNR with high noise factors (i.e. EEGs), SER give more impressive results in such cases. Next, we applied SER method to real VEP signals to analyse the P3 responses for matched and non-matched stimuli. The P3 parameters extracted through our proposed SER method showed higher P3 response for matched stimulus, which confirms to the existing neuroscience knowledge. Single trial PCA using KSR and RP methods failed to indicate any difference for the stimuli.
    Bandwidth Allocation for ABR Service in Cellular Networks
    Available Bit Rate Service (ABR) is the lower priority service and the better service for the transmission of data. On wireline ATM networks ABR source is always getting the feedback from switches about increase or decrease of bandwidth according to the changing network conditions and minimum bandwidth is guaranteed. In wireless networks guaranteeing the minimum bandwidth is really a challenging task as the source is always in mobile and traveling from one cell to another cell. Re establishment of virtual circuits from start to end every time causes the delay in transmission. In our proposed solution we proposed the mechanism to provide more available bandwidth to the ABR source by re-usage of part of old Virtual Channels and establishing the new ones. We want the ABR source to transmit the data continuously (non-stop) inorderto avoid the delay. In worst case scenario at least minimum bandwidth is to be allocated. In order to keep the data flow continuously, priority is given to the handoff ABR call against new ABR call.
    An Interval-Based Multi-Attribute Decision Making Approach for Electric Utility Resource Planning
    This paper presents an interval-based multi-attribute decision making (MADM) approach in support of the decision process with imprecise information. The proposed decision methodology is based on the model of linear additive utility function but extends the problem formulation with the measure of composite utility variance. A sample study concerning with the evaluation of electric generation expansion strategies is provided showing how the imprecise data may affect the choice toward the best solution and how a set of alternatives, acceptable to the decision maker (DM), may be identified with certain confidence.
    Speaker Independent Quranic Recognizer Basedon Maximum Likelihood Linear Regression
    An automatic speech recognition system for the formal Arabic language is needed. The Quran is the most formal spoken book in Arabic, it is spoken all over the world. In this research, an automatic speech recognizer for Quranic based speakerindependent was developed and tested. The system was developed based on the tri-phone Hidden Markov Model and Maximum Likelihood Linear Regression (MLLR). The MLLR computes a set of transformations which reduces the mismatch between an initial model set and the adaptation data. It uses the regression class tree, as well as, estimates a set of linear transformations for the mean and variance parameters of a Gaussian mixture HMM system. The 30th Chapter of the Quran, with five of the most famous readers of the Quran, was used for the training and testing of the data. The chapter includes about 2000 distinct words. The advantages of using the Quranic verses as the database in this developed recognizer are the uniqueness of the words and the high level of orderliness between verses. The level of accuracy from the tested data ranged 68 to 85%.
    An Analysis of Blackouts for Electric Power Transmission Systems
    In this paper an analysis of blackouts in electric power transmission systems is implemented using a model and studied in simple networks with a regular topology. The proposed model describes load demand and network improvements evolving on a slow timescale as well as the fast dynamics of cascading overloads and outages.
    Pattern Classification of Back-Propagation Algorithm Using Exclusive Connecting Network
    The objective of this paper is to a design of pattern classification model based on the back-propagation (BP) algorithm for decision support system. Standard BP model has done full connection of each node in the layers from input to output layers. Therefore, it takes a lot of computing time and iteration computing for good performance and less accepted error rate when we are doing some pattern generation or training the network. However, this model is using exclusive connection in between hidden layer nodes and output nodes. The advantage of this model is less number of iteration and better performance compare with standard back-propagation model. We simulated some cases of classification data and different setting of network factors (e.g. hidden layer number and nodes, number of classification and iteration). During our simulation, we found that most of simulations cases were satisfied by BP based using exclusive connection network model compared to standard BP. We expect that this algorithm can be available to identification of user face, analysis of data, mapping data in between environment data and information.
    Intelligent Solutions for Umbrella Systems in Telecommunication Supervision Systems
    This paper indicate the importance of telecommunications supervision systems (TSS), integrating heterogeneous TSS into single system thru umbrella systems, introduces the structure, features, requirements of TSS and TSS related intelligent solutions.
    Dynamic Load Modeling for KHUZESTAN Power System Voltage Stability Studies
    Based on the component approach, three kinds of dynamic load models, including a single –motor model, a two-motor model and composite load model have been developed for the stability studies of Khuzestan power system. The study results are presented in this paper. Voltage instability is a dynamic phenomenon and therefore requires dynamic representation of the power system components. Industrial loads contain a large fraction of induction machines. Several models of different complexity are available for the description investigations. This study evaluates the dynamic performances of several dynamic load models in combination with the dynamics of a load changing transformer. Case study is steel industrial substation in Khuzestan power systems.
    A Neuro Adaptive Control Strategy for Movable Power Source of Proton Exchange Membrane Fuel Cell Using Wavelets
    Movable power sources of proton exchange membrane fuel cells (PEMFC) are the important research done in the current fuel cells (FC) field. The PEMFC system control influences the cell performance greatly and it is a control system for industrial complex problems, due to the imprecision, uncertainty and partial truth and intrinsic nonlinear characteristics of PEMFCs. In this paper an adaptive PI control strategy using neural network adaptive Morlet wavelet for control is proposed. It is based on a single layer feed forward neural networks with hidden nodes of adaptive morlet wavelet functions controller and an infinite impulse response (IIR) recurrent structure. The IIR is combined by cascading to the network to provide double local structure resulting in improving speed of learning. The proposed method is applied to a typical 1 KW PEMFC system and the results show the proposed method has more accuracy against to MLP (Multi Layer Perceptron) method.
    Feasibility of the Evolutionary Algorithm using Different Behaviours of the Mutation Rate to Design Simple Digital Logic Circuits
    The evolutionary design of electronic circuits, or evolvable hardware, is a discipline that allows the user to automatically obtain the desired circuit design. The circuit configuration is under the control of evolutionary algorithms. Several researchers have used evolvable hardware to design electrical circuits. Every time that one particular algorithm is selected to carry out the evolution, it is necessary that all its parameters, such as mutation rate, population size, selection mechanisms etc. are tuned in order to achieve the best results during the evolution process. This paper investigates the abilities of evolution strategy to evolve digital logic circuits based on programmable logic array structures when different mutation rates are used. Several mutation rates (fixed and variable) are analyzed and compared with each other to outline the most appropriate choice to be used during the evolution of combinational logic circuits. The experimental results outlined in this paper are important as they could be used by every researcher who might need to use the evolutionary algorithm to design digital logic circuits.
    FPGA-based Systems for Evolvable Hardware
    Since 1992, year where Hugo de Garis has published the first paper on Evolvable Hardware (EHW), a period of intense creativity has followed. It has been actively researched, developed and applied to various problems. Different approaches have been proposed that created three main classifications: extrinsic, mixtrinsic and intrinsic EHW. Each of these solutions has a real interest. Nevertheless, although the extrinsic evolution generates some excellent results, the intrinsic systems are not so advanced. This paper suggests 3 possible solutions to implement the run-time configuration intrinsic EHW system: FPGA-based Run-Time Configuration system, JBits-based Run-Time Configuration system and Multi-board functional-level Run-Time Configuration system. The main characteristic of the proposed architectures is that they are implemented on Field Programmable Gate Array. A comparison of proposed solutions demonstrates that multi-board functional-level run-time configuration is superior in terms of scalability, flexibility and the implementation easiness.
    Data Transmission Reliability in Short Message Integrated Distributed Monitoring Systems

    Short message integrated distributed monitoring systems (SM-DMS) are growing rapidly in wireless communication applications in various areas, such as electromagnetic field (EMF) management, wastewater monitoring, and air pollution supervision, etc. However, delay in short messages often makes the data embedded in SM-DMS transmit unreliably. Moreover, there are few regulations dealing with this problem in SMS transmission protocols. In this study, based on the analysis of the command and data requirements in the SM-DMS, we developed a processing model for the control center to solve the delay problem in data transmission. Three components of the model: the data transmission protocol, the receiving buffer pool method, and the timer mechanism were described in detail. Discussions on adjusting the threshold parameter in the timer mechanism were presented for the adaptive performance during the runtime of the SM-DMS. This model optimized the data transmission reliability in SM-DMS, and provided a supplement to the data transmission reliability protocols at the application level.

    Determining of Threshold Levels of Burst by Burst AQAM/CDMA in Slow Rayleigh Fading Environments

    In this paper, we are going to determine the threshold levels of adaptive modulation in a burst by burst CDMA system by a suboptimum method so that the above method attempts to increase the average bit per symbol (BPS) rate of transceiver system by switching between the different modulation modes in variable channel condition. In this method, we choose the minimum values of average bit error rate (BER) and maximum values of average BPS on different values of average channel signal to noise ratio (SNR) and then calculate the relative threshold levels of them, so that when the instantaneous SNR increases, a higher order modulation be employed for increasing throughput and vise-versa when the instantaneous SNR decreases, a lower order modulation be employed for improvement of BER. In transmission step, by this adaptive modulation method, in according to comparison between obtained estimation of pilot symbols and a set of above suboptimum threshold levels, above system chooses one of states no transmission, BPSK, 4QAM and square 16QAM for modulation of data. The expected channel in this paper is a slow Rayleigh fading.

    A New Block-based NLMS Algorithm and Its Realization in Block Floating Point Format

    we propose a new normalized LMS (NLMS) algorithm, which gives satisfactory performance in certain applications in comaprison with con-ventional NLMS recursion. This new algorithm can be treated as a block based simplification of NLMS algorithm with significantly reduced number of multi¬ply and accumulate as well as division operations. It is also shown that such a recursion can be easily implemented in block floating point (BFP) arithmetic, treating the implementational issues much efficiently. In particular, the core challenges of a BFP realization to such adaptive filters are mainly considered in this regard. A global upper bound on the step size control parameter of the new algorithm due to BFP implementation is also proposed to prevent overflow in filtering as well as weight updating operations jointly.

    Multiuser Detection in CDMA Fast Fading Multipath Channel using Heuristic Genetic Algorithms
    In this paper, a simple heuristic genetic algorithm is used for Multistage Multiuser detection in fast fading environments. Multipath channels, multiple access interference (MAI) and near far effect cause the performance of the conventional detector to degrade. Heuristic Genetic algorithms, a rapidly growing area of artificial intelligence, uses evolutionary programming for initial search, which not only helps to converge the solution towards near optimal performance efficiently but also at a very low complexity as compared with optimal detector. This holds true for Additive White Gaussian Noise (AWGN) and multipath fading channels. Experimental results are presented to show the superior performance of the proposed techque over the existing methods.
    System Concept for Low Analog Complexity and High-IF Superposition Heterodyne Receivers
    For today-s and future wireless communications applications, more and more data traffic has to be transmitted with growing speed and quality demands. The analog front-end of any mobile device has to cope with very hard specifications regardless which transmission standard has to be supported. State-of-the-art analog front-end implementations are reaching the limit of technical feasibility. For that reason, alternative front-end architectures could support a continuing development of mobile communications e.g., six-port-based front-ends [1], [2]. In this article we propose an analog front-end with high intermediate frequency and which utilizes additive mixing instead of multiplicative mixing. The system architecture is presented and several spurious effects as well as their influence on the system dimensioning are discussed. Furthermore, several issues concerning the technical feasibility are provided and some simulation results are discussed which show the principle functionality of the proposed superposition heterodyne receiver.
    Bandwidth Optimization through Dynamic Routing in ATM Networks: Genetic Algorithm and Tabu Search Approach
    Asynchronous Transfer Mode (ATM) is widely used in telecommunications systems to send data, video and voice at a very high speed. In ATM network optimizing the bandwidth through dynamic routing is an important consideration. Previous research work shows that traditional optimization heuristics result in suboptimal solution. In this paper we have explored non-traditional optimization technique. We propose comparison of two such algorithms - Genetic Algorithm (GA) and Tabu search (TS), based on non-traditional Optimization approach, for solving the dynamic routing problem in ATM networks which in return will optimize the bandwidth. The optimized bandwidth could mean that some attractive business applications would become feasible such as high speed LAN interconnection, teleconferencing etc. We have also performed a comparative study of the selection mechanisms in GA and listed the best selection mechanism and a new initialization technique which improves the efficiency of the GA.
    Decoupled, Reduced Order Model for Double Output Induction Generator Using Integral Manifolds and Iterative Separation Theory
    In this paper presents a technique for developing the computational efficiency in simulating double output induction generators (DOIG) with two rotor circuits where stator transients are to be included. Iterative decomposition is used to separate the flux– Linkage equations into decoupled fast and slow subsystems, after which the model order of the fast subsystems is reduced by neglecting the heavily damped fast transients caused by the second rotor circuit using integral manifolds theory. The two decoupled subsystems along with the equation for the very slowly changing slip constitute a three time-scale model for the machine which resulted in increasing computational speed. Finally, the proposed method of reduced order in this paper is compared with the other conventional methods in linear and nonlinear modes and it is shown that this method is better than the other methods regarding simulation accuracy and speed.
    Electrocardiogram Signal Compression Using Multiwavelet Transform
    In this paper we are to find the optimum multiwavelet for compression of electrocardiogram (ECG) signals. At present, it is not well known which multiwavelet is the best choice for optimum compression of ECG. In this work, we examine different multiwavelets on 24 sets of ECG data with entirely different characteristics, selected from MITBIH database. For assessing the functionality of the different multiwavelets in compressing ECG signals, in addition to known factors such as Compression Ratio (CR), Percent Root Difference (PRD), Distortion (D), Root Mean Square Error (RMSE) in compression literature, we also employed the Cross Correlation (CC) criterion for studying the morphological relations between the reconstructed and the original ECG signal and Signal to reconstruction Noise Ratio (SNR). The simulation results show that the cardbal2 by the means of identity (Id) prefiltering method to be the best effective transformation.
    Comparison of Compression Ability Using DCT and Fractal Technique on Different Imaging Modalities
    Image compression is one of the most important applications Digital Image Processing. Advanced medical imaging requires storage of large quantities of digitized clinical data. Due to the constrained bandwidth and storage capacity, however, a medical image must be compressed before transmission and storage. There are two types of compression methods, lossless and lossy. In Lossless compression method the original image is retrieved without any distortion. In lossy compression method, the reconstructed images contain some distortion. Direct Cosine Transform (DCT) and Fractal Image Compression (FIC) are types of lossy compression methods. This work shows that lossy compression methods can be chosen for medical image compression without significant degradation of the image quality. In this work DCT and Fractal Compression using Partitioned Iterated Function Systems (PIFS) are applied on different modalities of images like CT Scan, Ultrasound, Angiogram, X-ray and mammogram. Approximately 20 images are considered in each modality and the average values of compression ratio and Peak Signal to Noise Ratio (PSNR) are computed and studied. The quality of the reconstructed image is arrived by the PSNR values. Based on the results it can be concluded that the DCT has higher PSNR values and FIC has higher compression ratio. Hence in medical image compression, DCT can be used wherever picture quality is preferred and FIC is used wherever compression of images for storage and transmission is the priority, without loosing picture quality diagnostically.
    Generalized Predictive Control of Batch Polymerization Reactor
    This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.
    Optimization of a Three-Term Backpropagation Algorithm Used for Neural Network Learning
    The back-propagation algorithm calculates the weight changes of an artificial neural network, and a two-term algorithm with a dynamically optimal learning rate and a momentum factor is commonly used. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third term increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and optimization approaches for evaluating the learning parameters are required to facilitate the application of the three terms BP algorithm. This paper considers the optimization of the new back-propagation algorithm by using derivative information. A family of approaches exploiting the derivatives with respect to the learning rate, momentum factor and proportional factor is presented. These autonomously compute the derivatives in the weight space, by using information gathered from the forward and backward procedures. The three-term BP algorithm and the optimization approaches are evaluated using the benchmark XOR problem.
    Diagnosis of Inter Turn Fault in the Stator of Synchronous Generator Using Wavelet Based ANFIS
    In this paper, Wavelet based ANFIS for finding inter turn fault of generator is proposed. The detector uniquely responds to the winding inter turn fault with remarkably high sensitivity. Discrimination of different percentage of winding affected by inter turn fault is provided via ANFIS having an Eight dimensional input vector. This input vector is obtained from features extracted from DWT of inter turn faulty current leaving the generator phase winding. Training data for ANFIS are generated via a simulation of generator with inter turn fault using MATLAB. The proposed algorithm using ANFIS is giving satisfied performance than ANN with selected statistical data of decomposed levels of faulty current.
    Mobility Management Enhancement for Transferring AAA Context in Mobile Grid
    Adapting wireless devices to communicate within grid networks empowers us by providing range of possibilities.. These devices create a mechanism for consumers and publishers to create modern networks with or without peer device utilization. Emerging mobile networks creates new challenges in the areas of reliability, security, and adaptability. In this paper, we propose a system encompassing mobility management using AAA context transfer for mobile grid networks. This system ultimately results in seamless task processing and reduced packet loss, communication delays, bandwidth, and errors.
    Receive and Transmit Array Antenna Spacingand Their Effect on the Performance of SIMO and MIMO Systems by using an RCS Channel Model
    In this paper, the effect of receive and/or transmit antenna spacing on the performance (BER vs. SNR) of multipleantenna systems is determined by using an RCS (Radar Cross Section) channel model. In this physical model, the scatterers existing in the propagation environment are modeled by their RCS so that the correlation of the receive signal complex amplitudes, i.e., both magnitude and phase, can be estimated. The proposed RCS channel model is then compared with classical models.
    High Speed Video Transmission for Telemedicine using ATM Technology
    In this paper, we study statistical multiplexing of VBR video in ATM networks. ATM promises to provide high speed realtime multi-point to central video transmission for telemedicine applications in rural hospitals and in emergency medical services. Video coders are known to produce variable bit rate (VBR) signals and the effects of aggregating these VBR signals need to be determined in order to design a telemedicine network infrastructure capable of carrying these signals. We first model the VBR video signal and simulate it using a generic continuous-data autoregressive (AR) scheme. We carry out the queueing analysis by the Fluid Approximation Model (FAM) and the Markov Modulated Poisson Process (MMPP). The study has shown a trade off: multiplexing VBR signals reduces burstiness and improves resource utilization, however, the buffer size needs to be increased with an associated economic cost. We also show that the MMPP model and the Fluid Approximation model fit best, respectively, the cell region and the burst region. Therefore, a hybrid MMPP and FAM completely characterizes the overall performance of the ATM statistical multiplexer. The ramifications of this technology are clear: speed, reliability (lower loss rate and jitter), and increased capacity in video transmission for telemedicine. With migration to full IP-based networks still a long way to achieving both high speed and high quality of service, the proposed ATM architecture will remain of significant use for telemedicine.