Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 53

Electrical, Computer, Energetic, Electronic and Communication Engineering

  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 53
    ML Detection with Symbol Estimation for Nonlinear Distortion of OFDM Signal

    In this paper, a new technique of signal detection has been proposed for detecting the orthogonal frequency-division multiplexing (OFDM) signal in the presence of nonlinear distortion.There are several advantages of OFDM communications system.However, one of the existing problems is remain considered as the nonlinear distortion generated by high-power-amplifier at the transmitter end due to the large dynamic range of an OFDM signal. The proposed method is the maximum likelihood detection with the symbol estimation. When the training data are available, the neural network has been used to learn the characteristic of received signal and to estimate the new positions of the transmitted symbol which are provided to the maximum likelihood detector. Resulting in the system performance, the nonlinear distortions of a traveling wave tube amplifier with OFDM signal are considered in this paper.Simulation results of the bit-error-rate performance are obtained with 16-QAM OFDM systems.

    A proposed High-Resolution Time-Frequency Distribution for the Analysis of Multicomponent and Speech Signals

    In this paper, we propose a novel time-frequency distribution (TFD) for the analysis of multi-component signals. In particular, we use synthetic as well as real-life speech signals to prove the superiority of the proposed TFD in comparison to some existing ones. In the comparison, we consider the cross-terms suppression and the high energy concentration of the signal around its instantaneous frequency (IF).

    Application of Genetic Algorithm for FACTS-based Controller Design

    In this paper, genetic algorithm (GA) opmization technique is applied to design Flexible AC Transmission System (FACTS)-based damping controllers. Two types of controller structures, namely a proportional-integral (PI) and a lead-lag (LL) are considered. The design problem of the proposed controllers is formulated as an optimization problem and GA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The proposed controllers are tested on a weakly connected power system subjected to different disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC-based controllers improve greatly the voltage profile of the system under severe disturbances. Further, the dynamic performances of both the PI and LL structured FACTS-controller are analyzed at different loading conditions and under various disturbance condition as well as under unbalanced fault conditions..

    VoIP and Database Traffic Co-existence over IEEE 802.11b WLAN with Redundancy

    This paper presents the findings of two experiments that were performed on the Redundancy in Wireless Connection Model (RiWC) using the 802.11b standard. The experiments were simulated using OPNET 11.5 Modeler software. The first was aimed at finding the maximum number of simultaneous Voice over Internet Protocol (VoIP) users the model would support under the G.711 and G.729 codec standards when the packetization interval was 10 milliseconds (ms). The second experiment examined the model?s VoIP user capacity using the G.729 codec standard along with background traffic using the same packetization interval as in the first experiment. To determine the capacity of the model under various experiments, we checked three metrics: jitter, delay and data loss. When background traffic was added, we checked the response time in addition to the previous three metrics. The findings of the first experiment indicated that the maximum number of simultaneous VoIP users the model was able to support was 5, which is consistent with recent research findings. When using the G.729 codec, the model was able to support up to 16 VoIP users; similar experiments in current literature have indicated a maximum of 7 users. The finding of the second experiment demonstrated that the maximum number of VoIP users the model was able to support was 12, with the existence of background traffic.

    A novel Iterative Approach for Phase Noise Cancellation in Multi-Carrier Code Division Multiple Access (MC-CDMA) Systems

    The aim of this paper is to emphasize and alleviate the effect of phase noise due to imperfect local oscillators on the performances of a Multi-Carrier CDMA system. After the cancellation of Common Phase Error (CPE), an iterative approach is introduced which iteratively estimates Inter-Carrier Interference (ICI) components in the frequency domain and cancels their contribution in the time domain. Simulation are conducted in order to investigate the achievable performances for several parameters, such as the spreading factor, the modulation order, the phase noise power and the transmission Signal-to-Noise Ratio.

    Asymptotic Analysis of Instant Messaging Service with Relay Nodes

    In this paper, we provide complete end-to-end delay analyses including the relay nodes for instant messages. Message Session Relay Protocol (MSRP) is used to provide congestion control for large messages in the Instant Messaging (IM) service. Large messages are broken into several chunks. These chunks may traverse through a maximum number of two relay nodes before reaching destination according to the IETF specification of the MSRP relay extensions. We discuss the current solutions of sending large instant messages and introduce a proposal to reduce message flows in the IM service. We consider virtual traffic parameter i.e., the relay nodes are stateless non-blocking for scalability purpose. This type of relay node is also assumed to have input rate at constant bit rate. We provide a new scheduling policy that schedules chunks according to their previous node?s delivery time stamp tags. Validation and analysis is shown for such scheduling policy. The performance analysis with the model introduced in this paper is simple and straight forward, which lead to reduced message flows in the IM service.

    A Method for Controlling of Hand Prosthesis Based on Neural Network

    The people are differed by their capabilities, skills and mental agilities. The evolution of human from childhood when they are completely dependent up to adultness the time they gradually set the dependency free is too complicated, by considering they have all started from almost one point but some become cleverer and some less. The main control command of a cybernetic hand should be posted by remaining healthy organs of disabled Person. These commands can be from several channels, which their recording and detecting are different and need complicated study. In this research, we suppose that, this stage has been done or in the other words, the command has been already sent and detected. So the main goal is to control a long hand, upper elbow hand missing, by an interest angle define by disabled. It means that, the system input is the position desired by disables and the output is the elbow-joint angle variation. Therefore the goal is a suitable control design based on neural network theory in order to meet the given mapping.

    Teager-Huang Analysis Applied to Sonar Target Recognition

    In this paper, a new approach for target recognition based on the Empirical mode decomposition (EMD) algorithm of Huang etal. [11] and the energy tracking operator of Teager [13]-[14] is introduced. The conjunction of these two methods is called Teager-Huang analysis. This approach is well suited for nonstationary signals analysis. The impulse response (IR) of target is first band pass filtered into subsignals (components) called Intrinsic mode functions (IMFs) with well defined Instantaneous frequency (IF) and Instantaneous amplitude (IA). Each IMF is a zero-mean AM-FM component. In second step, the energy of each IMF is tracked using the Teager energy operator (TEO). IF and IA, useful to describe the time-varying characteristics of the signal, are estimated using the Energy separation algorithm (ESA) algorithm of Maragos et al .[16]-[17]. In third step, a set of features such as skewness and kurtosis are extracted from the IF, IA and IMF energy functions. The Teager-Huang analysis is tested on set of synthetic IRs of Sonar targets with different physical characteristics (density, velocity, shape,? ). PCA is first applied to features to discriminate between manufactured and natural targets. The manufactured patterns are classified into spheres and cylinders. One hundred percent of correct recognition is achieved with twenty three echoes where sixteen IRs, used for training, are free noise and seven IRs, used for testing phase, are corrupted with white Gaussian noise.

    Identification of Wideband Sources Using Higher Order Statistics in Noisy Environment

    This paper deals with the localization of the wideband sources. We develop a new approach for estimating the wide band sources parameters. This method is based on the high order statistics of the recorded data in order to eliminate the Gaussian components from the signals received on the various hydrophones.In fact the noise of sea bottom is regarded as being Gaussian. Thanks to the coherent signal subspace algorithm based on the cumulant matrix of the received data instead of the cross-spectral matrix the wideband correlated sources are perfectly located in the very noisy environment. We demonstrate the performance of the proposed algorithm on the real data recorded during an underwater acoustics experiments.

    A Security Model of Voice Eavesdropping Protection over Digital Networks

    The purpose of this research is to develop a security model for voice eavesdropping protection over digital networks. The proposed model provides an encryption scheme and a personal secret key exchange between communicating parties, a so-called voice data transformation system, resulting in a real-privacy conversation. The operation of this system comprises two main steps as follows: The first one is the personal secret key exchange for using the keys in the data encryption process during conversation. The key owner could freely make his/her choice in key selection, so it is recommended that one should exchange a different key for a different conversational party, and record the key for each case into the memory provided in the client device. The next step is to set and record another personal option of encryption, either taking all frames or just partial frames, so-called the figure of 1:M. Using different personal secret keys and different sets of 1:M to different parties without the intervention of the service operator, would result in posing quite a big problem for any eavesdroppers who attempt to discover the key used during the conversation, especially in a short period of time. Thus, it is quite safe and effective to protect the case of voice eavesdropping. The results of the implementation indicate that the system can perform its function accurately as designed. In this regard, the proposed system is suitable for effective use in voice eavesdropping protection over digital networks, without any requirements to change presently existing network systems, mobile phone network and VoIP, for instance.

    An Impairment Sensitive and Reliable SR-ARQ Mechanism for Unreliable Feedback in GPRS

    The advances in wireless communication have opened unlimited horizons but there are some challenges as well. The Nature derived air medium between MS (Mobile Station) and BS (Base Station) is beyond human control and produces channel impairment. The impact of the natural conditions at the air medium is the biggest issue in wireless communication. Natural conditions make reliability more cumbersome; here reliability refers to the efficient recovery of the lost or erroneous data. The SR-ARQ (Selective Repeat-Automatic Repeat Request) protocol is a de facto standard for any wireless technology at the air interface with its standard reliability features. Our focus in this research is on the reliability of the control or feedback signal of the SR-ARQ protocol. The proposed mechanism, RSR-ARQ (Reliable SR-ARQ) is an enhancement of the SR-ARQ protocol that has ensured the reliability of the control signals through channel impairment sensitive mechanism. We have modeled the system under two-state discrete time Markov Channel. The simulation results demonstrate the better recovery of the lost or erroneous data that will increase the overall system performance.

    Video Matting based on Background Estimation

    This paper presents a video matting method, which extracts the foreground and alpha matte from a video sequence. The objective of video matting is finding the foreground and compositing it with the background that is different from the one in the original image. By finding the motion vectors (MVs) using a sliced block matching algorithm (SBMA), we can extract moving regions from the video sequence under the assumption that the foreground is moving and the background is stationary. In practice, foreground areas are not moving through all frames in an image sequence, thus we accumulate moving regions through the image sequence. The boundaries of moving regions are found by Canny edge detector and the foreground region is separated in each frame of the sequence. Remaining regions are defined as background regions. Extracted backgrounds in each frame are combined and reframed as an integrated single background. Based on the estimated background, we compute the frame difference (FD) of each frame. Regions with the FD larger than the threshold are defined as foreground regions, boundaries of foreground regions are defined as unknown regions and the rest of regions are defined as backgrounds. Segmentation information that classifies an image into foreground, background, and unknown regions is called a trimap. Matting process can extract an alpha matte in the unknown region using pixel information in foreground and background regions, and estimate the values of foreground and background pixels in unknown regions. The proposed video matting approach is adaptive and convenient to extract a foreground automatically and to composite a foreground with a background that is different from the original background.

    SVM Based Model as an Optimal Classifier for the Classification of Sonar Signals

    Research into the problem of classification of sonar signals has been taken up as a challenging task for the neural networks. This paper investigates the design of an optimal classifier using a Multi layer Perceptron Neural Network (MLP NN) and Support Vector Machines (SVM). Results obtained using sonar data sets suggest that SVM classifier perform well in comparison with well-known MLP NN classifier. An average classification accuracy of 91.974% is achieved with SVM classifier and 90.3609% with MLP NN classifier, on the test instances. The area under the Receiver Operating Characteristics (ROC) curve for the proposed SVM classifier on test data set is found as 0.981183, which is very close to unity and this clearly confirms the excellent quality of the proposed classifier. The SVM classifier employed in this paper is implemented using kernel Adatron algorithm is seen to be robust and relatively insensitive to the parameter initialization in comparison to MLP NN.

    Comparative Study of Evolutionary Model and Clustering Methods in Circuit Partitioning Pertaining to VLSI Design

    Partitioning is a critical area of VLSI CAD. In order to build complex digital logic circuits its often essential to sub-divide multi -million transistor design into manageable Pieces. This paper looks at the various partitioning techniques aspects of VLSI CAD, targeted at various applications. We proposed an evolutionary time-series model and a statistical glitch prediction system using a neural network with selection of global feature by making use of clustering method model, for partitioning a circuit. For evolutionary time-series model, we made use of genetic, memetic & neuro-memetic techniques. Our work focused in use of clustering methods - K-means & EM methodology. A comparative study is provided for all techniques to solve the problem of circuit partitioning pertaining to VLSI design. The performance of all approaches is compared using benchmark data provided by MCNC standard cell placement benchmark net lists. Analysis of the investigational results proved that the Neuro-memetic model achieves greater performance then other model in recognizing sub-circuits with minimum amount of interconnections between them.

    Grey Prediction Based Handoff Algorithm

    As the demand for higher capacity in a cellular environment increases, the cell size decreases. This fact makes the role of suitable handoff algorithms to reduce both number of handoffs and handoff delay more important. In this paper we show that applying the grey prediction technique for handoff leads to considerable decrease in handoff delay with using a small number of handoffs, compared with traditional hystersis based handoff algorithms.

    Noise Optimization Techniques for 1V 1GHz CMOS Low-Noise Amplifiers Design

    A 1V, 1GHz low noise amplifier (LNA) has been designed and simulated using Spectre simulator in a standard TSMC 0.18um CMOS technology.With low power and noise optimization techniques, the amplifier provides a gain of 24 dB, a noise figure of only 1.2 dB, power dissipation of 14 mW from a 1 V power supply.

    Parallel Discrete Fourier Transform for Fast FIR Filtering Based on Overlapped-save Block Structure

    To successfully provide a fast FIR filter with FTT algorithms, overlapped-save algorithms can be used to lower the computational complexity and achieve the desired real-time processing. As the length of the input block increases in order to improve the efficiency, a larger volume of zero padding will greatly increase the computation length of the FFT. In this paper, we use the overlapped block digital filtering to construct a parallel structure. As long as the down-sampling (or up-sampling) factor is an exact multiple lengths of the impulse response of a FIR filter, we can process the input block by using a parallel structure and thus achieve a low-complex fast FIR filter with overlapped-save algorithms. With a long filter length, the performance and the throughput of the digital filtering system will also be greatly enhanced.

    An Algorithm Proposed for FIR Filter Coefficients Representation

    Finite impulse response (FIR) filters have the advantage of linear phase, guaranteed stability, fewer finite precision errors, and efficient implementation. In contrast, they have a major disadvantage of high order need (more coefficients) than IIR counterpart with comparable performance. The high order demand imposes more hardware requirements, arithmetic operations, area usage, and power consumption when designing and fabricating the filter. Therefore, minimizing or reducing these parameters, is a major goal or target in digital filter design task. This paper presents an algorithm proposed for modifying values and the number of non-zero coefficients used to represent the FIR digital pulse shaping filter response. With this algorithm, the FIR filter frequency and phase response can be represented with a minimum number of non-zero coefficients. Therefore, reducing the arithmetic complexity needed to get the filter output. Consequently, the system characteristic i.e. power consumption, area usage, and processing time are also reduced. The proposed algorithm is more powerful when integrated with multiplierless algorithms such as distributed arithmetic (DA) in designing high order digital FIR filters. Here the DA usage eliminates the need for multipliers when implementing the multiply and accumulate unit (MAC) and the proposed algorithm will reduce the number of adders and addition operations needed through the minimization of the non-zero values coefficients to get the filter output.

    Joint Transmitter-Receiver Optimization for Bonded Wireline Communications

    With the advent of DSL services, high data rates are now available over phone lines, yet higher rates are in demand. In this paper, we optimize the transmit filters that can be used over wireline channels. Results showing the bit error rates when optimized filters are used, and with a decision feedback equalizer (DFE) employed in the receiver, are given. We then show that significantly higher throughput can be achieved by modeling the channel as a multiple input multiple output (MIMO) channel. A receiver that employs a MIMO-DFE that deals jointly with several users is proposed and shown to provide significant improvement over the conventional DFE.

    Iterative Joint Power Control and Partial Crosstalk Cancellation in Upstream VDSL

    Crosstalk is the major limiting issue in very high bit-rate digital subscriber line (VDSL) systems in terms of bit-rate or service coverage. At the central office side, joint signal processing accompanied by appropriate power allocation enables complex multiuser processors to provide near capacity rates. Unfortunately complexity grows with the square of the number of lines within a binder, so by taking into account that there are only a few dominant crosstalkers who contribute to main part of crosstalk power, the canceller structure can be simplified which resulted in a much lower run-time complexity. In this paper, a multiuser power control scheme, namely iterative waterfilling, is combined with previously proposed partial crosstalk cancellation approaches to demonstrate the best ever achieved performance which is verified by simulation results.

    Acoustic Detection of the Red Date Palm Weevil

    In this paper, acoustic techniques are used to detect hidden insect infestations of date palm tress (Phoenix dactylifera L.). In particular, we use an acoustic instrument for early discovery of the presence of a destructive insect pest commonly known as the Red Date Palm Weevil (RDPW) and scientifically as Rhynchophorus ferrugineus (Olivier). This type of insect attacks date palm tress and causes irreversible damages at late stages. As a result, the infected trees must be destroyed. Therefore, early presence detection is a major part in controlling the spread and economic damage caused by this type of infestation. Furthermore monitoring and early detection of the disease can asses in taking appropriate measures such as isolating or treating the infected trees. The acoustic system is evaluated in terms of its ability for early discovery of hidden bests inside the tested tree. When signal acquisitions is completed for a number of date palms, a signal processing technique known as time-frequency analysis is evaluated in terms of providing an estimate that can be visually used to recognize the acoustic signature of the RDPW. The testing instrument was tested in the laboratory first then; it was used on suspected or infested tress in the field. The final results indicate that the acoustic monitoring approach along with signal processing techniques are very promising for the early detection of presence of the larva as well as the adult pest in the date palms.

    Order Reduction of Linear Dynamic Systems using Stability Equation Method and GA

    The authors present an algorithm for order reduction of linear dynamic systems using the combined advantages of stability equation method and the error minimization by Genetic algorithm. The denominator of the reduced order model is obtained by the stability equation method and the numerator terms of the lower order transfer function are determined by minimizing the integral square error between the transient responses of original and reduced order models using Genetic algorithm. The reduction procedure is simple and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The proposed algorithm has also been extended for the order reduction of linear multivariable systems. Two numerical examples are solved to illustrate the superiority of the algorithm over some existing ones including one example of multivariable system.

    EMD-Based Signal Noise Reduction

    This paper introduces a new signal denoising based on the Empirical mode decomposition (EMD) framework. The method is a fully data driven approach. Noisy signal is decomposed adaptively into oscillatory components called Intrinsic mode functions (IMFs) by means of a process called sifting. The EMD denoising involves filtering or thresholding each IMF and reconstructs the estimated signal using the processed IMFs. The EMD can be combined with a filtering approach or with nonlinear transformation. In this work the Savitzky-Golay filter and shoftthresholding are investigated. For thresholding, IMF samples are shrinked or scaled below a threshold value. The standard deviation of the noise is estimated for every IMF. The threshold is derived for the Gaussian white noise. The method is tested on simulated and real data and compared with averaging, median and wavelet approaches.

    A Smart-Visio Microphone for Audio-Visual Speech Recognition “Vmike“

    The practical implementation of audio-video coupled speech recognition systems is mainly limited by the hardware complexity to integrate two radically different information capturing devices with good temporal synchronisation. In this paper, we propose a solution based on a smart CMOS image sensor in order to simplify the hardware integration difficulties. By using on-chip image processing, this smart sensor can calculate in real time the X/Y projections of the captured image. This on-chip projection reduces considerably the volume of the output data. This data-volume reduction permits a transmission of the condensed visual information via the same audio channel by using a stereophonic input available on most of the standard computation devices such as PC, PDA and mobile phones. A prototype called VMIKE (Visio-Microphone) has been designed and realised by using standard 0.35um CMOS technology. A preliminary experiment gives encouraged results. Its efficiency will be further investigated in a large variety of applications such as biometrics, speech recognition in noisy environments, and vocal control for military or disabled persons, etc.

    Evaluating Performance of Quality-of-Service Routing in Large Networks

    The performance and complexity of QoS routing depends on the complex interaction between a large set of parameters. This paper investigated the scaling properties of source-directed link-state routing in large core networks. The simulation results show that the routing algorithm, network topology, and link cost function each have a significant impact on the probability of successfully routing new connections. The experiments confirm and extend the findings of other studies, and also lend new insight designing efficient quality-of-service routing policies in large networks.

    Comparison between Haar and Daubechies Wavelet Transformions on FPGA Technology

    Recently, the Field Programmable Gate Array (FPGA) technology offers the potential of designing high performance systems at low cost. The discrete wavelet transform has gained the reputation of being a very effective signal analysis tool for many practical applications. However, due to its computation-intensive nature, current implementation of the transform falls short of meeting real-time processing requirements of most application. The objectives of this paper are implement the Haar and Daubechies wavelets using FPGA technology. In addition, the comparison between the Haar and Daubechies wavelets is investigated. The Bit Error Rat (BER) between the input audio signal and the reconstructed output signal for each wavelet is calculated. It is seen that the BER using Daubechies wavelet techniques is less than Haar wavelet. The design procedure has been explained and designed using the stat-of-art Electronic Design Automation (EDA) tools for system design on FPGA. Simulation, synthesis and implementation on the FPGA target technology has been carried out.

    Nearfield UWB Pulse Array Beamformer based on Multirate Filter Bank

    The paper presents a method of designing ultrawide band (UWB) pulse array beamformer in the case of nearfield. Firstly the principle of space-time processing of UWB pulse array is discussed. The radical beampattern transform based on spherical coordinates is employed to solve the nearfield beamforming of UWB pulse array. The frequency invariant technology is considered for the frequency dependent beampattern of UWB pulse array. We use a multirate bank scheme of to implement the FI beamformer of UWB pulse array. By using multirate filters in each element channel, it can make the response of the UWB array to avoid distortion in the whole band. The simulation resultes are given to prove the efficiency and feasibility of this method.

    Robust Parameter and Scale Factor Estimation in Nonstationary and Impulsive Noise Environment

    The problem of FIR system parameter estimation has been considered in the paper. A new robust recursive algorithm for simultaneously estimation of parameters and scale factor of prediction residuals in non-stationary environment corrupted by impulsive noise has been proposed. The performance of derived algorithm has been tested by simulations.

    Design and Implementation of a Hybrid Fuzzy Controller for a High-Performance Induction

    This paper proposes an effective algorithm approach to hybrid control systems combining fuzzy logic and conventional control techniques of controlling the speed of induction motor assumed to operate in high-performance drives environment. The introducing of fuzzy logic in the control systems helps to achieve good dynamical response, disturbance rejection and low sensibility to parameter variations and external influences. Some fundamentals of the fuzzy logic control are preliminary illustrated. The developed control algorithm is robust, efficient and simple. It also assures precise trajectory tracking with the prescribed dynamics. Experimental results have shown excellent tracking performance of the proposed control system, and have convincingly demonstrated the validity and the usefulness of the hybrid fuzzy controller in high-performance drives with parameter and load uncertainties. Satisfactory performance was observed for most reference tracks.

    Application of Artificial Intelligence for Tuning the Parameters of an AGC

    This paper deals with the tuning of parameters for Automatic Generation Control (AGC). A two area interconnected hydrothermal system with PI controller is considered. Genetic Algorithm (GA) and Particle Swarm optimization (PSO) algorithms have been applied to optimize the controller parameters. Two objective functions namely Integral Square Error (ISE) and Integral of Time-multiplied Absolute value of the Error (ITAE) are considered for optimization. The effectiveness of an objective function is considered based on the variation in tie line power and change in frequency in both the areas. MATLAB/SIMULINK was used as a simulation tool. Simulation results reveal that ITAE is a better objective function than ISE. Performances of optimization algorithms are also compared and it was found that genetic algorithm gives better results than particle swarm optimization algorithm for the problems of AGC.

    A New Current-mode Multifunction Filter with High Impedance Outputs Using Minimum Number of Passive Elements

    A new current-mode multifunction filter using minimum number of passive elements is proposed. The proposed filter has single-input and four high-impedance outputs. It uses four passive elements (two capacitors and two resistors) and four dual output second generation current conveyors. Each output provides a different filter response, namely, low-pass, high-pass, band-pass and band-reject. The sensitivity analysis is also carried out on both ideal and non-ideal filter configurations. The validity of the proposed filter is verified through PSPICE simulations.

    Integrated Subset Split for Balancing Network Utilization and Quality of Routing

    The overlay approach has been widely used by many service providers for Traffic Engineering (TE) in large Internet backbones. In the overlay approach, logical connections are set up between edge nodes to form a full mesh virtual network on top of the physical topology. IP routing is then run over the virtual network. Traffic engineering objectives are achieved through carefully routing logical connections over the physical links. Although the overlay approach has been implemented in many operational networks, it has a number of well-known scaling issues. This paper proposes a new approach to achieve traffic engineering without full-mesh overlaying with the help of integrated approach and equal subset split method. Traffic engineering needs to determine the optimal routing of traffic over the existing network infrastructure by efficiently allocating resource in order to optimize traffic performance on an IP network. Even though constraint-based routing [1] of Multi-Protocol Label Switching (MPLS) is developed to address this need, since it is not widely tested or debugged, Internet Service Providers (ISPs) resort to TE methods under Open Shortest Path First (OSPF), which is the most commonly used intra-domain routing protocol. Determining OSPF link weights for optimal network performance is an NP-hard problem. As it is not possible to solve this problem, we present a subset split method to improve the efficiency and performance by minimizing the maximum link utilization in the network via a small number of link weight modifications. The results of this method are compared against results of MPLS architecture [9] and other heuristic methods.

    Handover Strategies Challenges in Wireless ATM Networks

    To support user mobility for a wireless network new mechanisms are needed and are fundamental, such as paging, location updating, routing, and handover. Also an important key feature is mobile QoS offered by the WATM. Several ATM network protocols should be updated to implement mobility management and to maintain the already ATM QoS over wireless ATM networks. A survey of the various schemes and types of handover is provided. Handover procedure allows guarantee the terminal connection reestablishment when it moves between areas covered by different base stations. It is useful to satisfy user radio link transfer without interrupting a connection. However, failure to offer efficient solutions will result in handover important packet loss, severe delays and degradation of QoS offered to the applications. This paper reviews the requirements, characteristics and open issues of wireless ATM, particularly with regard to handover. It introduces key aspects of WATM and mobility extensions, which are added in the fixed ATM network. We propose a flexible approach for handover management that will minimize the QoS deterioration. Functional entities of this flexible approach are discussed in order to achieve minimum impact on the connection quality when a MT crosses the BS.

    Microarrays Denoising via Smoothing of Coefficients in Wavelet Domain

    We describe a novel method for removing noise (in wavelet domain) of unknown variance from microarrays. The method is based on a smoothing of the coefficients of the highest subbands. Specifically, we decompose the noisy microarray into wavelet subbands, apply smoothing within each highest subband, and reconstruct a microarray from the modified wavelet coefficients. This process is applied a single time, and exclusively to the first level of decomposition, i.e., in most of the cases, it is not necessary a multirresoltuion analysis. Denoising results compare favorably to the most of methods in use at the moment.

    Combined Beamforming and Channel Estimation in WCDMA Communication Systems

    We address the problem of joint beamforming and multipath channel parameters estimation in Wideband Code Division Multiple Access (WCDMA) communication systems that employ Multiple-Access Interference (MAI) suppression techniques in the uplink (from mobile to base station). Most of the existing schemes rely on time multiplex a training sequence with the user data. In WCDMA, the channel parameters can also be estimated from a code multiplexed common pilot channel (CPICH) that could be corrupted by strong interference resulting in a bad estimate. In this paper, we present new methods to combine interference suppression together with channel estimation when using multiple receiving antennas by using adaptive signal processing techniques. Computer simulation is used to compare between the proposed methods and the existing conventional estimation techniques.

    Hybrid Modulation Technique for Fingerprinting

    This paper addresses an efficient technique to embed and detect digital fingerprint code. Orthogonal modulation method is a straightforward and widely used approach for digital fingerprinting but shows several limitations in computational cost and signal efficiency. Coded modulation method can solve these limitations in theory. However it is difficult to perform well in practice if host signals are not available during tracing colluders, other kinds of attacks are applied, and the size of fingerprint code becomes large. In this paper, we propose a hybrid modulation method, in which the merits of or-thogonal modulation and coded modulation method are combined so that we can achieve low computational cost and high signal efficiency. To analyze the performance, we design a new fingerprint code based on GD-PBIBD theory and modulate this code into images by our method using spread-spectrum watermarking on frequency domain. The results show that the proposed method can efficiently handle large fingerprint code and trace colluders against averaging attacks.

    Generalized Predictive Control of Batch Polymerization Reactor

    This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.

    High-Speed Pipeline Implementation of Radix-2 DIF Algorithm

    In this paper, we propose a new architecture for the implementation of the N-point Fast Fourier Transform (FFT), based on the Radix-2 Decimation in Frequency algorithm. This architecture is based on a pipeline circuit that can process a stream of samples and produce two FFT transform samples every clock cycle. Compared to existing implementations the architecture proposed achieves double processing speed using the same circuit complexity.

    A New Approach to Signal Processing for DC-Electromagnetic Flowmeters

    Electromagnetic flowmeters with DC excitation are used for a wide range of fluid measurement tasks, but are rarely found in dosing applications with short measurement cycles due to the achievable accuracy. This paper will identify a number of factors that influence the accuracy of this sensor type when used for short-term measurements. Based on these results a new signal-processing algorithm will be described that overcomes the identified problems to some extend. This new method allows principally a higher accuracy of electromagnetic flowmeters with DC excitation than traditional methods.

    A PSO-Based Optimum Design of PID Controller for a Linear Brushless DC Motor

    This Paper presents a particle swarm optimization (PSO) method for determining the optimal proportional-integral-derivative (PID) controller parameters, for speed control of a linear brushless DC motor. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. The brushless DC motor is modelled in Simulink and the PSO algorithm is implemented in MATLAB. Comparing with Genetic Algorithm (GA) and Linear quadratic regulator (LQR) method, the proposed method was more efficient in improving the step response characteristics such as, reducing the steady-states error; rise time, settling time and maximum overshoot in speed control of a linear brushless DC motor.

    Evaluating Spectral Relationships between Signals by Removing the Contribution of a Common, Periodic Source A Partial Coherence-based Approach

    Partial coherence between two signals removing the contribution of a periodic, deterministic signal is proposed for evaluating the interrelationship in multivariate systems. The estimator expression was derived and shown to be independent of such periodic signal. Simulations were used for obtaining its critical value, which were found to be the same as those for Gaussian signals, as well as for evaluating the technique. An Illustration with eletroencephalografic (EEG) signals during photic stimulation is also provided. The application of the proposed technique in both simulation and real EEG data indicate that it seems to be very specific in removing the contribution of periodic sources. The estimate independence of the periodic signal may widen partial coherence application to signal analysis, since it could be used together with simple coherence to test for contamination in signals by a common, periodic noise source.

    Performance of Laboratory Experiments over the Internet: Towards an Intelligent Tutoring System on Automatic Control

    Intelligent tutoring systems constitute an evolution of computer-aided educational software. We present here the modules of an intelligent tutoring system for Automatic Control, developed in our department. Through the software application developed,students can perform complete automatic control laboratory experiments, either over the departmental local area network or over the Internet. Monitoring of access to the system (local as well as international), along with student performance statistics, has yielded strongly encouraging results (as of fall 2004), despite the advanced technical content of the presented paradigm, thus showing the potential of the system developed for education and for training.

    Genetically Optimized TCSC Controller for Transient Stability Improvement

    This paper presents a procedure for modeling and tuning the parameters of Thyristor Controlled Series Compensation (TCSC) controller in a multi-machine power system to improve transient stability. First a simple transfer function model of TCSC controller for stability improvement is developed and the parameters of the proposed controller are optimally tuned. Genetic algorithm (GA) is employed for the optimization of the parameter-constrained nonlinear optimization problem implemented in a simulation environment. By minimizing an objective function in which the oscillatory rotor angle deviations of the generators are involved, transient stability performance of the system is improved. The proposed TCSC controller is tested on a multi-machine system and the simulation results are presented. The nonlinear simulation results validate the effectiveness of proposed approach for transient stability improvement in a multimachine power system installed with a TCSC. The simulation results also show that the proposed TCSC controller is also effective in damping low frequency oscillations.

    Watermark Bit Rate in Diverse Signal Domains

    A study of the obtainable watermark data rate for information hiding algorithms is presented in this paper. As the perceptual entropy for wideband monophonic audio signals is in the range of four to five bits per sample, a significant amount of additional information can be inserted into signal without causing any perceptual distortion. Experimental results showed that transform domain watermark embedding outperforms considerably watermark embedding in time domain and that signal decompositions with a high gain of transform coding, like the wavelet transform, are the most suitable for high data rate information hiding. Keywords?Digital watermarking, information hiding, audio watermarking, watermark data rate.

    Order Reduction by Least-Squares Methods about General Point ''a''

    The concept of order reduction by least-squares moment matching and generalised least-squares methods has been extended about a general point ?a?, to obtain the reduced order models for linear, time-invariant dynamic systems. Some heuristic criteria have been employed for selecting the linear shift point ?a?, based upon the means (arithmetic, harmonic and geometric) of real parts of the poles of high order system. It is shown that the resultant model depends critically on the choice of linear shift point ?a?. The validity of the criteria is illustrated by solving a numerical example and the results are compared with the other existing techniques.

    Volterra Filtering Techniques for Removal of Gaussian and Mixed Gaussian-Impulse Noise

    In this paper, we propose a new class of Volterra series based filters for image enhancement and restoration. Generally the linear filters reduce the noise and cause blurring at the edges. Some nonlinear filters based on median operator or rank operator deal with only impulse noise and fail to cancel the most common Gaussian distributed noise. A class of second order Volterra filters is proposed to optimize the trade-off between noise removal and edge preservation. In this paper, we consider both the Gaussian and mixed Gaussian-impulse noise to test the robustness of the filter. Image enhancement and restoration results using the proposed Volterra filter are found to be superior to those obtained with standard linear and nonlinear filters.

    Localization by DKF Multi Sensor Fusion in the Uncertain Environments for Mobile Robot

    This paper presents an optimized algorithm for robot localization which increases the correctness and accuracy of the estimating position of mobile robot to more than 150% of the past methods [1] in the uncertain and noisy environment. In this method the odometry and vision sensors are combined by an adapted well-known discrete kalman filter [2]. This technique also decreased the computation process of the algorithm by DKF simple implementation. The experimental trial of the algorithm is performed on the robocup middle size soccer robot; the system can be used in more general environments.

    Performance Enhancement of Cellular OFDM Based Wireless LANs by Exploiting Spatial Diversity Techniques

    This paper represents an investigation on how exploiting multiple transmit antennas by OFDM based wireless LAN subscribers can mitigate physical layer error rate. Then by comparing the Wireless LANs that utilize spatial diversity techniques with the conventional ones it will reveal how PHY and TCP throughputs behaviors are ameliorated. In the next step it will assess the same issues based on a cellular context operation which is mainly introduced as an innovated solution that beside a multi cell operation scenario benefits spatio-temporal signaling schemes as well. Presented simulations will shed light on the improved performance of the wide range and high quality wireless LAN services provided by the proposed approach.

    Optimization of the Structures of the Electric Feeder Systems of the Oil Pumping Plants in Algeria

    In Algeria, now, the oil pumping plants are fed with electric power by independent local sources. This type of feeding has many advantages (little climatic influence, independent operation). However it requires a qualified maintenance staff, a rather high frequency of maintenance and repair and additional fuel costs. Taking into account the increasing development of the national electric supply network (Sonelgaz), a real possibility of transfer of the local sources towards centralized sources appears.These latter cannot only be more economic but more reliable than the independent local sources as well. In order to carry out this transfer, it is necessary to work out an optimal strategy to rebuilding these networks taking in account the economic parameters and the indices of reliability.

    Simulation Tools for Fixed Point DSP Algorithms and Architectures

    This paper presents software tools that convert the C/Cµ floating point source code for a DSP algorithm into a fixedpoint simulation model that can be used to evaluate the numericalperformance of the algorithm on several different fixed pointplatforms including microprocessors, DSPs and FPGAs. The tools use a novel system for maintaining binary point informationso that the conversion from floating point to fixed point isautomated and the resulting fixed point algorithm achieves maximum possible precision. A configurable architecture is used during the simulation phase so that the algorithm can produce a bit-exact output for several different target devices.

    A New Version of Unscented Kalman Filter

    This paper presents a new algorithm which yields a nonlinear state estimator called iterated unscented Kalman filter. This state estimator makes use of both statistical and analytical linearization techniques in different parts of the filtering process. It outperforms the other three nonlinear state estimators: unscented Kalman filter (UKF), extended Kalman filter (EKF) and iterated extended Kalman filter (IEKF) when there is severe nonlinearity in system equation and less nonlinearity in measurement equation. The algorithm performance has been verified by illustrating some simulation results.

    Calibration of Time-Skew Error in a M-Channel Time-Interleaved Analog-to-Digital Converter

    Offset mismatch, gain mismatch, and time-skew error between time-interleaved channels limit the performance of time-interleaved analog-to-digital converters (TIADC). This paper focused on the time-skew error. A new technique for calibrating time-skew error in M-channels TIADC is described, and simulation results are also presented.

    On Maneuvering Target Tracking with Online Observed Colored Glint Noise Parameter Estimation

    In this paper a comprehensive algorithm is presented to alleviate the undesired simultaneous effects of target maneuvering, observed glint noise distribution, and colored noise spectrum using online colored glint noise parameter estimation. The simulation results illustrate a significant reduction in the root mean square error (RMSE) produced by the proposed algorithm compared to the algorithms that do not compensate all the above effects simultaneously.