Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 57

Electrical, Computer, Energetic, Electronic and Communication Engineering

  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 57
    Fuzzy Neuro Approach to Busbar Protection; Design and Implementation

    This paper presents a new approach for busbar protection with stable operation of current transformer during saturation, using fuzzy neuro and symmetrical components theory. This technique uses symmetrical components of current signals to learn the hidden relationship existing in the input patterns. Simulation studies are preformed and the influence of changing system parameters such as inception fault and source impedance is studied. Details of the design procedure and the results of performance studies with the proposed relay are given in the paper. An analysis of the performance of the proposed technique during ct saturation conditions is presented. The performance of the technique was investigated for a variety of operating conditions and for several busbar configurations. Data generated by EMTDC simulations of model power systems were used in the investigations. The results indicate that the proposed technique is stable during ct saturation conditions.

    Hardware Stream Cipher Based On LFSR and Modular Division Circuit

    Proposal for a secure stream cipher based on Linear Feedback Shift Registers (LFSR) is presented here. In this method, shift register structure used for polynomial modular division is combined with LFSR keystream generator to yield a new keystream generator with much higher periodicity. Security is brought into this structure by using the Boolean function to combine state bits of the LFSR keystream generator and taking the output through the Boolean function. This introduces non-linearity and security into the structure in a way similar to the Non-linear filter generator. The security and throughput of the suggested stream cipher is found to be much greater than the known LFSR based structures for the same key length.

    Consideration a Novel Manner for Data Sending Quality in Heterogeneous Radio Networks

    In real-time networks a large number of application programs are relying on video data and heterogeneous data transmission techniques. The aim of this research is presenting a method for end-to-end vouch quality service in surface applicationlayer for sending video data in comparison form in wireless heterogeneous networks. This method tries to improve the video sending over the wireless heterogeneous networks with used techniques in surface layer, link and application. The offered method is showing a considerable improvement in quality observing by user. In addition to this, other specifications such as shortage of data load that had require to resending and limited the relation period length to require time for second data sending, help to be used the offered method in the wireless devices that have a limited energy. The presented method and the achieved improvement is simulated and presented in the NS-2 software.

    Introduce the FWA in the Band 3300-3400 MHz
    This paper gives a study about forging solution to deploy the fixed wireless access (FWA) in the band 3300-3400MHz instead of 3400-3600MHz to eschew the harmful interference between from the FWA towards fixed satellite services receiver presented in this band. The impact of FWA services toward the FSS and the boundaries of spectrum emission mask had been considered to calculate the possible Guard band required in this case. In addition, supplementary separation distance added to improve the coexistence between the two adjacent bands. Simulation had been done using Matlab software base on ITU models reliance on the most popular specification used for the tropical weather countries. Review the current problem of interference between two systems and some mitigation techniques which adopted in Malaysia as a case study is a part of this research.
    Artificial Intelligence Techniques Applications for Power Disturbances Classification

    Artificial Intelligence (AI) methods are increasingly being used for problem solving. This paper concerns using AI-type learning machines for power quality problem, which is a problem of general interest to power system to provide quality power to all appliances. Electrical power of good quality is essential for proper operation of electronic equipments such as computers and PLCs. Malfunction of such equipment may lead to loss of production or disruption of critical services resulting in huge financial and other losses. It is therefore necessary that critical loads be supplied with electricity of acceptable quality. Recognition of the presence of any disturbance and classifying any existing disturbance into a particular type is the first step in combating the problem. In this work two classes of AI methods for Power quality data mining are studied: Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). We show that SVMs are superior to ANNs in two critical respects: SVMs train and run an order of magnitude faster; and SVMs give higher classification accuracy.

    Optimal Control Strategy for High Performance EV Interior Permanent Magnet Synchronous Motor
    The controllable electrical loss which consists of the copper loss and iron loss can be minimized by the optimal control of the armature current vector. The control algorithm of current vector minimizing the electrical loss is proposed and the optimal current vector can be decided according to the operating speed and the load conditions. The proposed control algorithm is applied to the experimental PM motor drive system and this paper presents a modern approach of speed control for permanent magnet synchronous motor (PMSM) applied for Electric Vehicle using a nonlinear control. The regulation algorithms are based on the feedback linearization technique. The direct component of the current is controlled to be zero which insures the maximum torque operation. The near unity power factor operation is also achieved. More over, among EV-s motor electric propulsion features, the energy efficiency is a basic characteristic that is influenced by vehicle dynamics and system architecture. For this reason, the EV dynamics are taken into account.
    Stabilization of the Lorenz Chaotic Equations by Fuzzy Controller
    In this paper, a fuzzy controller is designed for stabilization of the Lorenz chaotic equations. A simple Mamdani inference method is used for this purpose. This method is very simple and applicable for complex chaotic systems and it can be implemented easily. The stability of close loop system is investigated by the Lyapunov stabilization criterion. A Lyapunov function is introduced and the global stability is proven. Finally, the effectiveness of this method is illustrated by simulation results and it is shown that the performance of the system is improved.
    A high Speed 8 Transistor Full Adder Design Using Novel 3 Transistor XOR Gates

    The paper proposes the novel design of a 3T XOR gate combining complementary CMOS with pass transistor logic. The design has been compared with earlier proposed 4T and 6T XOR gates and a significant improvement in silicon area and power-delay product has been obtained. An eight transistor full adder has been designed using the proposed three-transistor XOR gate and its performance has been investigated using 0.15um and 0.35um technologies. Compared to the earlier designed 10 transistor full adder, the proposed adder shows a significant improvement in silicon area and power delay product. The whole simulation has been carried out using HSPICE.

    Chattering Phenomenon Supression of Buck Boost DC-DC Converter with Fuzzy Sliding Modes Control

    This paper proposes a Fuzzy Sliding Mode Control (FSMC) as a control strategy for Buck-Boost DC-DC converter. The proposed fuzzy controller specifies changes in the control signal based on the knowledge of the surface and the surface change to satisfy the sliding mode stability and attraction conditions. The performances of the proposed fuzzy sliding controller are compared to those obtained by a classical sliding mode controller. The satisfactory simulation results show the efficiency of the proposed control law which reduces the chattering phenomenon. Moreover, the obtained results prove the robustness of the proposed control law against variation of the load resistance and the input voltage of the studied converter.

    Enhanced Ant Colony Based Algorithm for Routing in Mobile Ad Hoc Network
    Mobile Ad hoc network consists of a set of mobile nodes. It is a dynamic network which does not have fixed topology. This network does not have any infrastructure or central administration, hence it is called infrastructure-less network. The change in topology makes the route from source to destination as dynamic fixed and changes with respect to time. The nature of network requires the algorithm to perform route discovery, maintain route and detect failure along the path between two nodes [1]. This paper presents the enhancements of ARA [2] to improve the performance of routing algorithm. ARA [2] finds route between nodes in mobile ad-hoc network. The algorithm is on-demand source initiated routing algorithm. This is based on the principles of swarm intelligence. The algorithm is adaptive, scalable and favors load balancing. The improvements suggested in this paper are handling of loss ants and resource reservation.
    Effect of Distributed Generators on the Optimal Operation of Distribution Networks

    This paper presents an approach for daily optimal operation of distribution networks considering Distributed Generators (DGs). Due to private ownership of DGs, a cost based compensation method is used to encourage DGs in active and reactive power generation. The objective function is summation of electrical energy generated by DGs and substation bus (main bus) in the next day. A genetic algorithm is used to solve the optimal operation problem. The approach is tested on an IEEE34 buses distribution feeder.

    Induction Motor Design with Limited Harmonic Currents Using Particle Swarm Optimization

    This paper presents an optimal design of poly-phase induction motor using Quadratic Interpolation based Particle Swarm Optimization (QI-PSO). The optimization algorithm considers the efficiency, starting torque and temperature rise as objective function (which are considered separately) and ten performance related items including harmonic current as constraints. The QI-PSO algorithm was implemented on a test motor and the results are compared with the Simulated Annealing (SA) technique, Standard Particle Swarm Optimization (SPSO), and normal design. Some benchmark problems are used for validating QI-PSO. From the test results QI-PSO gave better results and more suitable to motor-s design optimization. Cµ code is used for implementing entire algorithms.

    Hot-Spot Blob Merging for Real-Time Image Segmentation
    One of the major, difficult tasks in automated video surveillance is the segmentation of relevant objects in the scene. Current implementations often yield inconsistent results on average from frame to frame when trying to differentiate partly occluding objects. This paper presents an efficient block-based segmentation algorithm which is capable of separating partly occluding objects and detecting shadows. It has been proven to perform in real time with a maximum duration of 47.48 ms per frame (for 8x8 blocks on a 720x576 image) with a true positive rate of 89.2%. The flexible structure of the algorithm enables adaptations and improvements with little effort. Most of the parameters correspond to relative differences between quantities extracted from the image and should therefore not depend on scene and lighting conditions. Thus presenting a performance oriented segmentation algorithm which is applicable in all critical real time scenarios.
    Investigating the Impact of Wind Speed on Active and Reactive Power Penetration to the Distribution Network

    Wind power is among the most actively developing distributed generation (DG) technology. Majority of the wind power based DG technologies employ wind turbine induction generators (WTIG) instead of synchronous generators, for the technical advantages like: reduced size, increased robustness, lower cost, and increased electromechanical damping. However, dynamic changes of wind speed make the amount of active/reactive power injected/drawn to a WTIG embedded distribution network highly variable. This paper analyzes the effect of wind speed changes on the active and reactive power penetration to the wind energy embedded distribution network. Four types of wind speed changes namely; constant, linear change, gust change and random change of wind speed are considered in the analysis. The study is carried out by three-phase, non-linear, dynamic simulation of distribution system component models. Results obtained from the investigation are presented and discussed.

    Clustering Based Formulation for Short Term Load Forecasting

    A clustering based technique has been developed and implemented for Short Term Load Forecasting, in this article. Formulation has been done using Mean Absolute Percentage Error (MAPE) as an objective function. Data Matrix and cluster size are optimization variables. Model designed, uses two temperature variables. This is compared with six input Radial Basis Function Neural Network (RBFNN) and Fuzzy Inference Neural Network (FINN) for the data of the same system, for same time period. The fuzzy inference system has the network structure and the training procedure of a neural network which initially creates a rule base from existing historical load data. It is observed that the proposed clustering based model is giving better forecasting accuracy as compared to the other two methods. Test results also indicate that the RBFNN can forecast future loads with accuracy comparable to that of proposed method, where as the training time required in the case of FINN is much less.

    Fault Classification of Double Circuit Transmission Line Using Artificial Neural Network

    This paper addresses the problems encountered by conventional distance relays when protecting double-circuit transmission lines. The problems arise principally as a result of the mutual coupling between the two circuits under different fault conditions; this mutual coupling is highly nonlinear in nature. An adaptive protection scheme is proposed for such lines based on application of artificial neural network (ANN). ANN has the ability to classify the nonlinear relationship between measured signals by identifying different patterns of the associated signals. One of the key points of the present work is that only current signals measured at local end have been used to detect and classify the faults in the double circuit transmission line with double end infeed. The adaptive protection scheme is tested under a specific fault type, but varying fault location, fault resistance, fault inception angle and with remote end infeed. An improved performance is experienced once the neural network is trained adequately, which performs precisely when faced with different system parameters and conditions. The entire test results clearly show that the fault is detected and classified within a quarter cycle; thus the proposed adaptive protection technique is well suited for double circuit transmission line fault detection & classification. Results of performance studies show that the proposed neural network-based module can improve the performance of conventional fault selection algorithms.

    Extended Dynamic Source Routing Protocol for the Non Co-Operating Nodes in Mobile Adhoc Networks
    In this paper, a new approach based on the extent of friendship between the nodes is proposed which makes the nodes to co-operate in an ad hoc environment. The extended DSR protocol is tested under different scenarios by varying the number of malicious nodes and node moving speed. It is also tested varying the number of nodes in simulation used. The result indicates the achieved throughput by extended DSR is greater than the standard DSR and indicates the percentage of malicious drops over total drops are less in the case of extended DSR than the standard DSR.
    Simulation of a Boost PFC Converter with Electro Magnetic Interference Filter

    This paper deals with the simulation of a Boost Power Factor Correction (PFC) Converter with Electro Magnetic Interference (EMI) Filter. The diode rectifier with output capacitor gives poor power factor. The Boost Converter of PFC Circuit is analyzed and then simulated with diode rectifier. The Boost PFC Converter with EMI Filter is simulated for resistive load. The power factor is improved using the proposed converter.

    Design and Construction of Microcontroller-Based Telephone Exchange System
    This paper demonstrates design and construction of microcontroller-based telephone exchange system and the aims of this paper is to study telecommunication, connection with PIC16F877A and DTMF MT8870D. In microcontroller system, PIC 16F877 microcontroller is used to control the call processing. Dial tone, busy tone and ring tone are provided during call progress. Instead of using ready made tone generator IC, oscillator based tone generator is used. The results of this telephone exchange system are perfect for homes and small businesses needing the extensions. It requires the phone operation control system, the analog interface circuit and the switching circuit. This exchange design will contain eight channels. It is the best low cost, good quality telephone exchange for today-s telecommunication needs. It offers the features available in much more expensive PBX units without using high-priced phones. It is for long distance telephone services.
    Authentication in Multi-Hop Wireless Mesh Networks
    Wireless Mesh Networks (WMNs) are an emerging technology for last-mile broadband access. In WMNs, similar to ad hoc networks, each user node operates not only as a host but also as a router. User packets are forwarded to and from an Internet-connected gateway in multi-hop fashion. The WMNs can be integrated with other networking technologies i.e. ad hoc networks, to implement a smooth network extension. The meshed topology provides good reliability and scalability, as well as low upfront investments. Despite the recent start-up surge in WMNs, much research remains to be done in standardizing the functional parameters of WMNs to fully exploit their full potential. An edifice of the security concerns of these networks is authentication of a new client joining an integrated ad hoc network and such a scenario will require execution of a multihop authentication technique. Our endeavor in this paper is to introduce a secure authentication technique, with light over-heads that can be conveniently implemented for the ad-hoc nodes forming clients of an integrated WMN, thus facilitating their inter-operability.
    A New Hybrid Optimization Method for Optimum Distribution Capacitor Planning

    This work presents a new algorithm based on a combination of fuzzy (FUZ), Dynamic Programming (DP), and Genetic Algorithm (GA) approach for capacitor allocation in distribution feeders. The problem formulation considers two distinct objectives related to total cost of power loss and total cost of capacitors including the purchase and installation costs. The novel formulation is a multi-objective and non-differentiable optimization problem. The proposed method of this article uses fuzzy reasoning for sitting of capacitors in radial distribution feeders, DP for sizing and finally GA for finding the optimum shape of membership functions which are used in fuzzy reasoning stage. The proposed method has been implemented in a software package and its effectiveness has been verified through a 9-bus radial distribution feeder for the sake of conclusions supports. A comparison has been done among the proposed method of this paper and similar methods in other research works that shows the effectiveness of the proposed method of this paper for solving optimum capacitor planning problem.

    Designing FIR Filters with Polynomial Approach
    This paper discusses a method for designing the Finite Impulse Response (FIR) filters based on polynomial approach.
    Shunt Power Active Filter Control under NonIdeal Voltages Conditions

    In this paper, we propose the Modified Synchronous Detection (MSD) Method for determining the reference compensating currents of the shunt active power filter under non sinusoidal voltages conditions. For controlling the inverter switching we used the PI regulator. The numerical simulation results, using Power System Blockset Toolbox PSB of Matlab, from a complete structure, are presented and discussed.

    A Pipelined FSBM Hardware Architecture for HTDV-H.26x
    In MPEG and H.26x standards, to eliminate the temporal redundancy we use motion estimation. Given that the motion estimation stage is very complex in terms of computational effort, a hardware implementation on a re-configurable circuit is crucial for the requirements of different real time multimedia applications. In this paper, we present hardware architecture for motion estimation based on "Full Search Block Matching" (FSBM) algorithm. This architecture presents minimum latency, maximum throughput, full utilization of hardware resources such as embedded memory blocks, and combining both pipelining and parallel processing techniques. Our design is described in VHDL language, verified by simulation and implemented in a Stratix II EP2S130F1020C4 FPGA circuit. The experiment result show that the optimum operating clock frequency of the proposed design is 89MHz which achieves 160M pixels/sec.
    A Modified Speech Enhancement Using Adaptive Gain Equalizer with Non linear Spectral Subtraction for Robust Speech Recognition

    In this paper we present an enhanced noise reduction method for robust speech recognition using Adaptive Gain Equalizer with Non linear Spectral Subtraction. In Adaptive Gain Equalizer method (AGE), the input signal is divided into a number of subbands that are individually weighed in time domain, in accordance to the short time Signal-to-Noise Ratio (SNR) in each subband estimation at every time instant. Instead of focusing on suppression the noise on speech enhancement is focused. When analysis was done under various noise conditions for speech recognition, it was found that Adaptive Gain Equalizer method algorithm has an obvious failing point for a SNR of -5 dB, with inadequate levels of noise suppression for SNR less than this point. This work proposes the implementation of AGE when coupled with Non linear Spectral Subtraction (AGE-NSS) for robust speech recognition. The experimental result shows that out AGE-NSS performs the AGE when SNR drops below -5db level.

    Optimal One Bit Time Reversal For UWB Impulse Radio In Multi-User Wireless Communications
    In this paper, with the purpose of further reducing the complexity of the system, while keeping its temporal and spatial focusing performance, we investigate the possibility of using optimal one bit time reversal (TR) system for impulse radio ultra wideband multi-user wireless communications. The results show that, by optimally selecting the number of used taps in the pre-filter the optimal one bit TR system can outperform the full one bit TR system. In some cases, the temporal and spatial focusing performance of the optimal one bit TR system appears to be compatible with that of the original TR system. This is a significant result as the overhead cost is much lower than it is required in the original TR system.
    Improved Power Spectrum Estimation for RR-Interval Time Series
    The RR interval series is non-stationary and unevenly spaced in time. For estimating its power spectral density (PSD) using traditional techniques like FFT, require resampling at uniform intervals. The researchers have used different interpolation techniques as resampling methods. All these resampling methods introduce the low pass filtering effect in the power spectrum. The lomb transform is a means of obtaining PSD estimates directly from irregularly sampled RR interval series, thus avoiding resampling. In this work, the superiority of Lomb transform method has been established over FFT based approach, after applying linear and cubicspline interpolation as resampling methods, in terms of reproduction of exact frequency locations as well as the relative magnitudes of each spectral component.
    Distribution Feeder Reconfiguration Considering Distributed Generators

    Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. Fueling the attention have been the possibilities of international agreements to reduce greenhouse gas emissions, electricity sector restructuring, high power reliability requirements for certain activities, and concern about easing transmission and distribution capacity bottlenecks and congestion. So it is necessary that impact of these kinds of generators on distribution feeder reconfiguration would be investigated. This paper presents an approach for distribution reconfiguration considering Distributed Generators (DGs). The objective function is summation of electrical power losses A Tabu search optimization is used to solve the optimal operation problem. The approach is tested on a real distribution feeder.

    An Optimal Load Shedding Approach for Distribution Networks with DGs considering Capacity Deficiency Modelling of Bulked Power Supply

    This paper discusses a genetic algorithm (GA) based optimal load shedding that can apply for electrical distribution networks with and without dispersed generators (DG). Also, the proposed method has the ability for considering constant and variable capacity deficiency caused by unscheduled outages in the bulked generation and transmission system of bulked power supply. The genetic algorithm (GA) is employed to search for the optimal load shedding strategy in distribution networks considering DGs in two cases of constant and variable modelling of bulked power supply of distribution networks. Electrical power distribution systems have a radial network and unidirectional power flows. With the advent of dispersed generations, the electrical distribution system has a locally looped network and bidirectional power flows. Therefore, installed DG in the electrical distribution systems can cause operational problems and impact on existing operational schemes. Introduction of DGs in electrical distribution systems has introduced many new issues in operational and planning level. Load shedding as one of operational issue has no exempt. The objective is to minimize the sum of curtailed load and also system losses within the frame-work of system operational and security constraints. The proposed method is tested on a radial distribution system with 33 load points for more practical applications.

    Wormhole Attack Detection in Wireless Sensor Networks
    The nature of wireless ad hoc and sensor networks make them very attractive to attackers. One of the most popular and serious attacks in wireless ad hoc networks is wormhole attack and most proposed protocols to defend against this attack used positioning devices, synchronized clocks, or directional antennas. This paper analyzes the nature of wormhole attack and existing methods of defending mechanism and then proposes round trip time (RTT) and neighbor numbers based wormhole detection mechanism. The consideration of proposed mechanism is the RTT between two successive nodes and those nodes- neighbor number which is needed to compare those values of other successive nodes. The identification of wormhole attacks is based on the two faces. The first consideration is that the transmission time between two wormhole attack affected nodes is considerable higher than that between two normal neighbor nodes. The second detection mechanism is based on the fact that by introducing new links into the network, the adversary increases the number of neighbors of the nodes within its radius. This system does not require any specific hardware, has good performance and little overhead and also does not consume extra energy. The proposed system is designed in ad hoc on-demand distance vector (AODV) routing protocol and analysis and simulations of the proposed system are performed in network simulator (ns-2).
    Signal Generator Circuit Carrying Information as Embedded Features from Multi-Transducer Signals
    A novel circuit for generating a signal embedded with features about data from three sensors is presented. This suggested circuit is making use of a resistance-to-time converter employing a bridge amplifier, an integrator and a comparator. The second resistive sensor (Rz) is transformed into duty cycle. Another bridge with varying resistor, (Ry) in the feedback of an OP AMP is added in series to change the amplitude of the resulting signal in a proportional relationship while keeping the same frequency and duty cycle representing proportional changes in resistors Rx and Rz already mentioned. The resultant output signal carries three types of information embedded as variations of its frequency, duty cycle and amplitude.
    Robust Power System Stabilizer Design Using Particle Swarm Optimization Technique

    Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to design a robust power system stabilizer (PSS). The design problem of the proposed controller is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. Further, all the simulations results are compared with a conventionally designed power system stabilizer to show the superiority of the proposed design approach.

    Development of Low-cost OCDMA Encoder Based On Arrayed Waveguide Gratings(AWGs) and Optical Switches

    This paper describes the development of a 16-ports optical code division multiple access (OCDMA) encoder prototype based on Arrayed Waveguide Grating (AWG) and optical switches. It is potentially to provide a high security for data transmission due to all data will be transmitted in binary code form. The output signals from AWG are coded with a binary code that given to an optical switch before it signal modulate with the carrier and transmitted to the receiver. The 16-ports encoder used 16 double pole double throw (DPDT) toggle switches to control the polarization of voltage source from +5 V to -5 V for 16 optical switches. When +5 V is given, the optical switch will give code '1' and vice versa. The experimental results showed the insertion loss, crosstalk, uniformity, and optical signal-noise-ratio (OSNR) for the developed prototype are <12 dB, 9.77 dB, <1.63dB, and ≥20dB.

    Efficient Mean Shift Clustering Using Exponential Integral Kernels

    This paper presents a highly efficient algorithm for detecting and tracking humans and objects in video surveillance sequences. Mean shift clustering is applied on backgrounddifferenced image sequences. For efficiency, all calculations are performed on integral images. Novel corresponding exponential integral kernels are introduced to allow the application of nonuniform kernels for clustering, which dramatically increases robustness without giving up the efficiency of the integral data structures. Experimental results demonstrating the power of this approach are presented.

    A Joint Routing-Scheduling Approach for Throughput Optimization in WMNs
    Wireless Mesh Networking is a promising proposal for broadband data transmission in a large area with low cost and acceptable QoS. These features- trade offs in WMNs is a hot research field nowadays. In this paper a mathematical optimization framework has been developed to maximize throughput according to upper bound delay constraints. IEEE 802.11 based infrastructure backhauling mode of WMNs has been considered to formulate the MINLP optimization problem. Proposed method gives the full routing and scheduling procedure in WMN in order to obtain mentioned goals.
    Estimation of Attenuation and Phase Delay in Driving Voltage Waveform of an Ultra-High-Speed Image Sensor by Dimensional Analysis

    We present an explicit expression to estimate driving voltage attenuation through RC networks representation of an ultrahigh- speed image sensor. Elmore delay metric for a fundamental RC chain is employed as the first-order approximation. By application of dimensional analysis to SPICE simulation data, we found a simple expression that significantly improves the accuracy of the approximation. Estimation error of the resultant expression for uniform RC networks is less than 2%. Similarly, another simple closed-form model to estimate 50 % delay through fundamental RC networks is also derived with sufficient accuracy. The framework of this analysis can be extended to address delay or attenuation issues of other VLSI structures.

    Automatic Detection of Syllable Repetition in Read Speech for Objective Assessment of Stuttered Disfluencies
    Automatic detection of syllable repetition is one of the important parameter in assessing the stuttered speech objectively. The existing method which uses artificial neural network (ANN) requires high levels of agreement as prerequisite before attempting to train and test ANNs to separate fluent and nonfluent. We propose automatic detection method for syllable repetition in read speech for objective assessment of stuttered disfluencies which uses a novel approach and has four stages comprising of segmentation, feature extraction, score matching and decision logic. Feature extraction is implemented using well know Mel frequency Cepstra coefficient (MFCC). Score matching is done using Dynamic Time Warping (DTW) between the syllables. The Decision logic is implemented by Perceptron based on the score given by score matching. Although many methods are available for segmentation, in this paper it is done manually. Here the assessment by human judges on the read speech of 10 adults who stutter are described using corresponding method and the result was 83%.
    Determination of Regimes of the Equivalent Generator Based On Projective Geometry: The Generalized Equivalent Generator

    Requirements that should be met when determining the regimes of circuits with variable elements are formulated. The interpretation of the variations in the regimes, based on projective geometry, enables adequate expressions for determining and comparing the regimes to be derived. It is proposed to use as the parameters of a generalized equivalent generator of an active two-pole with changeable resistor such load current and voltage which provide the current through this resistor equal to zero.

    Blind Spot Area Tracking Solution Using 1x12 POF-Based Optical Couplers

    Optical 1x12 fused-taper-twisted polymer optical fiber (POF) couplers has been fabricated by a perform technique. Characterization of the coupler which proposed to be used in passive night vision application to tracking a blind sport area was reported. During the development process of fused-taper-twisted POF couplers was carried out, red LED fully utilized to be injected into the couplers to test the quality of fabricated couplers. Some characterization parameters, such as optical output power, POFs attenuation characteristics and power losses on the network were observed. The maximum output power efficiency of the coupler is about 40%, but it can be improved gradually through experience and practice.

    130 nm CMOS Mixer and VCO for 2.4 GHz Low-power Wireless Personal Area Networks
    This paper describes a 2.4 GHz passive switch mixer and a 5/2.5 GHz voltage-controlled negative Gm oscillator (VCO) with an inversion-mode MOS varactor. Both circuits are implemented using a 1P8M 0.13 μm process. The switch mixer has an input referred 1 dB compression point of -3.89 dBm and a conversion gain of -0.96 dB when the local oscillator power is +2.5 dBm. The VCO consumes only 1.75 mW, while drawing 1.45 mA from a 1.2 V supply voltage. In order to reduce the passives size, the VCO natural oscillation frequency is 5 GHz. A clocked CMOS divideby- two circuit is used for frequency division and quadrature phase generation. The VCO has a -109 dBc/Hz phase noise at 1 MHz frequency offset and a 2.35-2.5 GHz tuning range (after the frequency division), thus complying with ZigBee requirements.
    Characterization of Indoor Power Lines as Data Communication Channels Experimental Details and Results

    In this paper, a multi-branch power line is modeled using ABCD matrix to show its worth as a communication channel. The model is simulated using MATLAB in an effort to investigate the effects of multiple loading, multipath, and those as a result of load mismatching. The channel transfer function is obtained and investigated using different cable lengths, and different number of bridge taps under given loading conditions.

    EMOES: Eye Motion and Ocular Expression Simulator

    We introduce, a new interactive 3D simulation system of ocular motion and expressions suitable for: (1) character animation applications to game design, film production, HCI (Human Computer Interface), conversational animated agents, and virtual reality; (2) medical applications (ophthalmic neurological and muscular pathologies: research and education); and (3) real time simulation of unconscious cognitive and emotional responses (for use, e.g., in psychological research). The system is comprised of: (1) a physiologically accurate parameterized 3D model of the eyes, eyelids, and eyebrow regions; and (2) a prototype device for realtime control of eye motions and expressions, including unconsciously produced expressions, for application as in (1), (2), and (3) above. The 3D eye simulation system, created using state-of-the-art computer animation technology and 'optimized' for use with an interactive and web deliverable platform, is, to our knowledge, the most advanced/realistic available so far for applications to character animation and medical pedagogy.

    Agent-based Framework for Energy Efficiency in Wireless Sensor Networks
    Wireless sensor networks are consisted of hundreds or thousands of small sensors that have limited resources. Energy-efficient techniques are the main issue of wireless sensor networks. This paper proposes an energy efficient agent-based framework in wireless sensor networks. We adopt biologically inspired approaches for wireless sensor networks. Agent operates automatically with their behavior policies as a gene. Agent aggregates other agents to reduce communication and gives high priority to nodes that have enough energy to communicate. Agent behavior policies are optimized by genetic operation at the base station. Simulation results show that our proposed framework increases the lifetime of each node. Each agent selects a next-hop node with neighbor information and behavior policies. Our proposed framework provides self-healing, self-configuration, self-optimization properties to sensor nodes.
    Detection and Classification of Faults on Parallel Transmission Lines Using Wavelet Transform and Neural Network

    The protection of parallel transmission lines has been a challenging task due to mutual coupling between the adjacent circuits of the line. This paper presents a novel scheme for detection and classification of faults on parallel transmission lines. The proposed approach uses combination of wavelet transform and neural network, to solve the problem. While wavelet transform is a powerful mathematical tool which can be employed as a fast and very effective means of analyzing power system transient signals, artificial neural network has a ability to classify non-linear relationship between measured signals by identifying different patterns of the associated signals. The proposed algorithm consists of time-frequency analysis of fault generated transients using wavelet transform, followed by pattern recognition using artificial neural network to identify the type of the fault. MATLAB/Simulink is used to generate fault signals and verify the correctness of the algorithm. The adaptive discrimination scheme is tested by simulating different types of fault and varying fault resistance, fault location and fault inception time, on a given power system model. The simulation results show that the proposed scheme for fault diagnosis is able to classify all the faults on the parallel transmission line rapidly and correctly.

    Classification of Acoustic Emission Based Partial Discharge in Oil Pressboard Insulation System Using Wavelet Analysis

    Insulation used in transformer is mostly oil pressboard insulation. Insulation failure is one of the major causes of catastrophic failure of transformers. It is established that partial discharges (PD) cause insulation degradation and premature failure of insulation. Online monitoring of PDs can reduce the risk of catastrophic failure of transformers. There are different techniques of partial discharge measurement like, electrical, optical, acoustic, opto-acoustic and ultra high frequency (UHF). Being non invasive and non interference prone, acoustic emission technique is advantageous for online PD measurement. Acoustic detection of p.d. is based on the retrieval and analysis of mechanical or pressure signals produced by partial discharges. Partial discharges are classified according to the origin of discharges. Their effects on insulation deterioration are different for different types. This paper reports experimental results and analysis for classification of partial discharges using acoustic emission signal of laboratory simulated partial discharges in oil pressboard insulation system using three different electrode systems. Acoustic emission signal produced by PD are detected by sensors mounted on the experimental tank surface, stored on an oscilloscope and fed to computer for further analysis. The measured AE signals are analyzed using discrete wavelet transform analysis and wavelet packet analysis. Energy distribution in different frequency bands of discrete wavelet decomposed signal and wavelet packet decomposed signal is calculated. These analyses show a distinct feature useful for PD classification. Wavelet packet analysis can sort out any misclassification arising out of DWT in most cases.

    Tuning of PV Array Layout Configurations for Maximum Power Delivery
    In this paper, an approach for finding optimized layouts for connecting PV units delivering maximum array output power is suggested. The approach is based on considering the different varying parameters of PV units that might be extracted from a general two-diode model. These are mainly, solar irradiation, reverse saturation currents, ideality factors, series and shunt resistances in addition to operating temperature. The approach has been tested on 19 possible 2×3 configurations and allowed to determine the optimized configurations as well as examine the effects of the different units- parameters on the maximum output power. Thus, using this approach, standard arrays with n×m units can be configured for maximum generated power and allows designing PV based systems having reduced surfaces to fit specific required power, as it is the case for solar cars and other mobile systems.
    Capacity and Performance Analysis of Space-Time Block Coded MIMO-OFDM Systems over Rician Fading Channel

    This paper presents an analysis on the capacity and performance of MIMO-OFDM systems. The work is focused on the capacity of MIMO-OFDM systems over rician fading channel, in the case of the channel being known at the receiver only, which is more practical case of the channel. Simple expression for capacity is derived for the case of correlated rician fading. The performance of some MIMO-OFDM implementations with rician fading model is presented using an Alamouti coding scheme and Simulation results are obtained for both capacity and performance analysis.

    The Minimum PAPR Code for OFDM Systems
    In this paper, a block code to minimize the peak-toaverage power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals is proposed. It is shown that cyclic shift and codeword inversion cause not change to peak envelope power. The encoding rule for the proposed code comprises of searching for a seed codeword, shifting the register elements, and determining codeword inversion, eliminating the look-up table for one-to-one correspondence between the source and the coded data. Simulation results show that OFDM systems with the proposed code always have the minimum PAPR.
    A High Performance Technique in Harmonic Omitting Based on Predictive Current Control of a Shunt Active Power Filter

    The perfect operation of common Active Filters is depended on accuracy of identification system distortion. Also, using a suitable method in current injection and reactive power compensation, leads to increased filter performance. Due to this fact, this paper presents a method based on predictive current control theory in shunt active filter applications. The harmonics of the load current is identified by using o–d–q reference frame on load current and eliminating the DC part of d–q components. Then, the rest of these components deliver to predictive current controller as a Threephase reference current by using Park inverse transformation. System is modeled in discreet time domain. The proposed method has been tested using MATLAB model for a nonlinear load (with Total Harmonic Distortion=20%). The simulation results indicate that the proposed filter leads to flowing a sinusoidal current (THD=0.15%) through the source. In addition, the results show that the filter tracks the reference current accurately.

    Fuel Economy and Stability Enhancement of the Hybrid Vehicles by Using Electrical Machines on Non-Driven Wheels

    Using electrical machine in conventional vehicles, also called hybrid vehicles, has become a promising control scheme that enables some manners for fuel economy and driver assist for better stability. In this paper, vehicle stability control, fuel economy and Driving/Regeneration braking for a 4WD hybrid vehicle is investigated by using an electrical machine on each non-driven wheels. In front wheels driven vehicles, fuel economy and regenerative braking can be obtained by summing torques applied on rear wheels. On the other hand, unequal torques applied to rear wheels provides enhanced safety and path correction in steering. In this paper, a model with fourteen degrees of freedom is considered for vehicle body, tires and, suspension systems. Thereafter, powertrain subsystems are modeled. Considering an electrical machine on each rear wheel, a fuzzy controller is designed for each driving, braking, and stability conditions. Another fuzzy controller recognizes the vehicle requirements between the driving/regeneration and stability modes. Intelligent vehicle control to multi objective operation and forward simulation are the paper advantages. For reaching to these aims, power management control and yaw moment control will be done by three fuzzy controllers. Also, the above mentioned goals are weighted by another fuzzy sub-controller base on vehicle dynamic. Finally, Simulations performed in MATLAB/SIMULINK environment show that the proposed structure can enhance the vehicle performance in different modes effectively.

    ANN Models for Microstrip Line Synthesis and Analysis
    Microstrip lines, widely used for good reason, are broadband in frequency and provide circuits that are compact and light in weight. They are generally economical to produce since they are readily adaptable to hybrid and monolithic integrated circuit (IC) fabrication technologies at RF and microwave frequencies. Although, the existing EM simulation models used for the synthesis and analysis of microstrip lines are reasonably accurate, they are computationally intensive and time consuming. Neural networks recently gained attention as fast and flexible vehicles to microwave modeling, simulation and optimization. After learning and abstracting from microwave data, through a process called training, neural network models are used during microwave design to provide instant answers to the task learned.This paper presents simple and accurate ANN models for the synthesis and analysis of Microstrip lines to more accurately compute the characteristic parameters and the physical dimensions respectively for the required design specifications.
    Model Order Reduction of Linear Time Variant High Speed VLSI Interconnects using Frequency Shift Technique
    Accurate modeling of high speed RLC interconnects has become a necessity to address signal integrity issues in current VLSI design. To accurately model a dispersive system of interconnects at higher frequencies; a full-wave analysis is required. However, conventional circuit simulation of interconnects with full wave models is extremely CPU expensive. We present an algorithm for reducing large VLSI circuits to much smaller ones with similar input-output behavior. A key feature of our method, called Frequency Shift Technique, is that it is capable of reducing linear time-varying systems. This enables it to capture frequency-translation and sampling behavior, important in communication subsystems such as mixers, RF components and switched-capacitor filters. Reduction is obtained by projecting the original system described by linear differential equations into a lower dimension. Experiments have been carried out using Cadence Design Simulator cwhich indicates that the proposed technique achieves more % reduction with less CPU time than the other model order reduction techniques existing in literature. We also present applications to RF circuit subsystems, obtaining size reductions and evaluation speedups of orders of magnitude with insignificant loss of accuracy.
    Effect of Non Uniformity Factors and Assignment Factors on Errors in Charge Simulation Method with Point Charge Model

    Charge Simulation Method (CSM) is one of the very widely used numerical field computation technique in High Voltage (HV) engineering. The high voltage fields of varying non uniformities are encountered in practice. CSM programs being case specific, the simulation accuracies heavily depend on the user (programmers) experience. Here is an effort to understand CSM errors and evolve some guidelines to setup accurate CSM models, relating non uniformities with assignment factors. The results are for the six-point-charge model of sphere-plane gap geometry. Using genetic algorithm (GA) as tool, optimum assignment factors at different non uniformity factors for this model have been evaluated and analyzed. It is shown that the symmetrically placed six-point-charge models can be good enough to set up CSM programs with potential errors less than 0.1% when the field non uniformity factor is greater than 2.64 (field utilization factor less than 52.76%).

    A Hybrid Fuzzy AGC in a Competitive Electricity Environment

    This paper presents a new Hybrid Fuzzy (HF) PID type controller based on Genetic Algorithms (GA-s) for solution of the Automatic generation Control (AGC) problem in a deregulated electricity environment. In order for a fuzzy rule based control system to perform well, the fuzzy sets must be carefully designed. A major problem plaguing the effective use of this method is the difficulty of accurately constructing the membership functions, because it is a computationally expensive combinatorial optimization problem. On the other hand, GAs is a technique that emulates biological evolutionary theories to solve complex optimization problems by using directed random searches to derive a set of optimal solutions. For this reason, the membership functions are tuned automatically using a modified GA-s based on the hill climbing method. The motivation for using the modified GA-s is to reduce fuzzy system effort and take large parametric uncertainties into account. The global optimum value is guaranteed using the proposed method and the speed of the algorithm-s convergence is extremely improved, too. This newly developed control strategy combines the advantage of GA-s and fuzzy system control techniques and leads to a flexible controller with simple stricture that is easy to implement. The proposed GA based HF (GAHF) controller is tested on a threearea deregulated power system under different operating conditions and contract variations. The results of the proposed GAHF controller are compared with those of Multi Stage Fuzzy (MSF) controller, robust mixed H2/H∞ and classical PID controllers through some performance indices to illustrate its robust performance for a wide range of system parameters and load changes.

    New Design Constraints of FIR Filter on Magnitude and Phase of Error Function

    Exchange algorithm with constraints on magnitude and phase error separately in new way is presented in this paper. An important feature of the algorithms presented in this paper is that they allow for design constraints which often arise in practical filter design problems. Meeting required minimum stopband attenuation or a maximum deviation from the desired magnitude and phase responses in the passbands are common design constraints that can be handled by the methods proposed here. This new algorithm may have important advantages over existing technique, with respect to the speed and stability of convergence, memory requirement and low ripples.

    Optimal Location of Multi Type Facts Devices for Multiple Contingencies Using Particle Swarm Optimization

    In deregulated operating regime power system security is an issue that needs due thoughtfulness from researchers in the horizon of unbundling of generation and transmission. Electric power systems are exposed to various contingencies. Network contingencies often contribute to overloading of branches, violation of voltages and also leading to problems of security/stability. To maintain the security of the systems, it is desirable to estimate the effect of contingencies and pertinent control measurement can be taken on to improve the system security. This paper presents the application of particle swarm optimization algorithm to find the optimal location of multi type FACTS devices in a power system in order to eliminate or alleviate the line over loads. The optimizations are performed on the parameters, namely the location of the devices, their types, their settings and installation cost of FACTS devices for single and multiple contingencies. TCSC, SVC and UPFC are considered and modeled for steady state analysis. The selection of UPFC and TCSC suitable location uses the criteria on the basis of improved system security. The effectiveness of the proposed method is tested for IEEE 6 bus and IEEE 30 bus test systems.

    Adaptive Notch Filter for Harmonic Current Mitigation

    This paper presents an effective technique for harmonic current mitigation using an adaptive notch filter (ANF) to estimate current harmonics. The proposed filter consists of multiple units of ANF connected in parallel structure; each unit is governed by two ordinary differential equations. The frequency estimation is carried out based on the output of these units. The simulation and experimental results show the ability of the proposed tracking scheme to accurately estimate harmonics. The proposed filter was implemented digitally in TMS320F2808 and used in the control of hybrid active power filter (HAPF). The theoretical expectations are verified and demonstrated experimentally.