Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 24

Electrical, Computer, Energetic, Electronic and Communication Engineering

  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 24
    Technical and Economic Impacts of Distributed Generation on Distribution System
    Distributed Generation (DG) in the form of renewable power generation systems is currently preferred for clean power generation. It has a significant impact on the distribution systems. This impact may be either positively or negatively depending on the distribution system, distributed generator and load characteristics. In this works, an overview of DG is briefly introduced. The technology of DG is also listed while the technical impacts and economic impacts are explained.
    Color Constancy using Superpixel
    Color constancy algorithms are generally based on the simplified assumption about the spectral distribution or the reflection attributes of the scene surface. However, in reality, these assumptions are too restrictive. The methodology is proposed to extend existing algorithm to applying color constancy locally to image patches rather than globally to the entire images. In this paper, a method based on low-level image features using superpixels is proposed. Superpixel segmentation partition an image into regions that are approximately uniform in size and shape. Instead of using entire pixel set for estimating the illuminant, only superpixels with the most valuable information are used. Based on large scale experiments on real-world scenes, it can be derived that the estimation is more accurate using superpixels than when using the entire image.
    SLM Using Riemann Sequence Combined with DCT Transform for PAPR Reduction in OFDM Communication Systems
    Orthogonal Frequency Division Multiplexing (OFDM) is an efficient method of data transmission for high speed communication systems. However, the main drawback of OFDM systems is that, it suffers from the problem of high Peak-to-Average Power Ratio (PAPR) which causes inefficient use of the High Power Amplifier and could limit transmission efficiency. OFDM consist of large number of independent subcarriers, as a result of which the amplitude of such a signal can have high peak values. In this paper, we propose an effective reduction scheme that combines DCT and SLM techniques. The scheme is composed of the DCT followed by the SLM using the Riemann matrix to obtain phase sequences for the SLM technique. The simulation results show PAPR can be greatly reduced by applying the proposed scheme. In comparison with OFDM, while OFDM had high values of PAPR –about 10.4dB our proposed method achieved about 4.7dB reduction of the PAPR with low complexities computation. This approach also avoids randomness in phase sequence selection, which makes it simpler to decode at the receiver. As an added benefit, the matrices can be generated at the receiver end to obtain the data signal and hence it is not required to transmit side information (SI).
    Design of SiC Capacitive Pressure Sensor with LC-Based Oscillator Readout Circuit

    This paper presents the characterization and design of a capacitive pressure sensor with LC-based 0.35 µm CMOS readout circuit. SPICE is employed to evaluate the characteristics of the readout circuit and COMSOL multiphysics structural analysis is used to simulate the behavior of the pressure sensor. The readout circuit converts the capacitance variation of the pressure sensor into the frequency output. Simulation results show that the proposed pressure sensor has output frequency from 2.50 to 2.28 GHz in a pressure range from 0.1 to 2 MPa almost linearly. The sensitivity of the frequency shift with respect to the applied pressure load is 0.11 GHz/MPa.

    Enhancing the Connectedness in Ad–hoc Mesh Networks using the Terranet Technology

    This paper simulates the ad-hoc mesh network in rural areas, where such networks receive great attention due to their cost, since installing the infrastructure for regular networks in these areas is not possible due to the high cost. The distance between the communicating nodes is the most obstacles that the ad-hoc mesh network will face. For example, in Terranet technology, two nodes can communicate if they are only one kilometer far from each other. However, if the distance between them is more than one kilometer, then each node in the ad-hoc mesh networks has to act as a router that forwards the data it receives to other nodes. In this paper, we try to find the critical number of nodes which makes the network fully connected in a particular area, and then propose a method to enhance the intermediate node to accept to be a router to forward the data from the sender to the receiver. Much work was done on technological changes on peer to peer networks, but the focus of this paper will be on another feature which is to find the minimum number of nodes needed for a particular area to be fully connected and then to enhance the users to switch on their phones and accept to work as a router for other nodes. Our method raises the successful calls to 81.5% out of 100% attempt calls.

    Classification of Radio Communication Signals using Fuzzy Logic
    Characterization of radio communication signals aims at automatic recognition of different characteristics of radio signals in order to detect their modulation type, the central frequency, and the level. Our purpose is to apply techniques used in image processing in order to extract pertinent characteristics. To the single analysis, we add several rules for checking the consistency of hypotheses using fuzzy logic. This allows taking into account ambiguity and uncertainty that may remain after the extraction of individual characteristics. The aim is to improve the process of radio communications characterization.
    Evaluation of Coupling Factor in RF Inductively Coupled Systems
    This work presents an approach for the measurement of mutual inductance on near field inductive coupling. The mutual inductance between inductive circuits allows the simulation of energy transfer from reader to tag, that can be used in RFID and powerless implantable devices. It also allows one to predict the maximum voltage in the tag of the radio-frequency system.
    Optimal Capacitor Placement in Distribution Feeders
    Optimal capacitor allocation in distribution systems has been studied for a long times. It is an optimization problem which has an objective to define the optimal sizes and locations of capacitors to be installed. In this works, an overview of capacitor placement problem in distribution systems is briefly introduced. The objective functions and constraints of the problem are listed and the methodologies for solving the problem are summarized.
    Techniques for Reliability Evaluation in Distribution System Planning
    This paper presents reliability evaluation techniques which are applied in distribution system planning studies and operation. Reliability of distribution systems is an important issue in power engineering for both utilities and customers. Reliability is a key issue in the design and operation of electric power distribution systems and load. Reliability evaluation of distribution systems has been the subject of many recent papers and the modeling and evaluation techniques have improved considerably.
    A Single-chip Proportional to Absolute Temperature Sensor Using CMOS Technology
    Nowadays it is a trend for electronic circuit designers to integrate all system components on a single-chip. This paper proposed the design of a single-chip proportional to absolute temperature (PTAT) sensor including a voltage reference circuit using CEDEC 0.18m CMOS Technology. It is a challenge to design asingle-chip wide range linear response temperature sensor for many applications. The channel widths between the compensation transistor and the reference transistor are critical to design the PTAT temperature sensor circuit. The designed temperature sensor shows excellent linearity between -100°C to 200° and the sensitivity is about 0.05mV/°C. The chip is designed to operate with a single voltage source of 1.6V.
    Region Segmentation based on Gaussian Dirichlet Process Mixture Model and its Application to 3D Geometric Stricture Detection

    In general, image-based 3D scenes can now be found in many popular vision systems, computer games and virtual reality tours. So, It is important to segment ROI (region of interest) from input scenes as a preprocessing step for geometric stricture detection in 3D scene. In this paper, we propose a method for segmenting ROI based on tensor voting and Dirichlet process mixture model. In particular, to estimate geometric structure information for 3D scene from a single outdoor image, we apply the tensor voting and Dirichlet process mixture model to a image segmentation. The tensor voting is used based on the fact that homogeneous region in an image are usually close together on a smooth region and therefore the tokens corresponding to centers of these regions have high saliency values. The proposed approach is a novel nonparametric Bayesian segmentation method using Gaussian Dirichlet process mixture model to automatically segment various natural scenes. Finally, our method can label regions of the input image into coarse categories: “ground", “sky", and “vertical" for 3D application. The experimental results show that our method successfully segments coarse regions in many complex natural scene images for 3D.

    Automatic Generation Control of Interconnected Power System with Generation Rate Constraintsby Hybrid Neuro Fuzzy Approach

    The design of Automatic Generation Control (AGC) system plays a vital role in automation of power system. This paper proposes Hybrid Neuro Fuzzy (HNF) approach for AGC of two-area interconnected reheat thermal power system with the consideration of Generation Rate Constraint (GRC). The advantage of proposed controller is that it can handle the system non-linearities and at the same time the proposed approach is faster than conventional controllers. The performance of HNF controller has been compared with that of both conventional Proportional Integral (PI) controller as well as Fuzzy Logic Controller (FLC) both in the absence and presence of Generation Rate Constraint (GRC). System performance is examined considering disturbance in each area of interconnected power system.

    An Efficient VLSI Design Approach to Reduce Static Power using Variable Body Biasing

    In CMOS integrated circuit design there is a trade-off between static power consumption and technology scaling. Recently, the power density has increased due to combination of higher clock speeds, greater functional integration, and smaller process geometries. As a result static power consumption is becoming more dominant. This is a challenge for the circuit designers. However, the designers do have a few methods which they can use to reduce this static power consumption. But all of these methods have some drawbacks. In order to achieve lower static power consumption, one has to sacrifice design area and circuit performance. In this paper, we propose a new method to reduce static power in the CMOS VLSI circuit using Variable Body Biasing technique without being penalized in area requirement and circuit performance.

    The Possibility to Resolve the Security Problems through the LTE in Vehicular Ad-hoc Networks
    Vehicular Ad-Hoc Networks (VANET) can provide communications between vehicles or infrastructures. It provides the convenience of driving and the secure driving to reduce accidents. In VANET, the security is more important because it is closely related to accidents. Additionally, VANET raises a privacy issue because it can track the location of vehicles and users- identity when a security mechanism is provided. In this paper, we analyze the problem of an existing solution for security requirements required in VANET, and resolve the problem of the existing method when a key management mechanism is provided for the security operation in VANET. Therefore, we show suitability of the Long Term Evolution (LTE) in VANET for the solution of this problem.
    Configuration and the Calculation of Link Budget for a Connection via a Geostationary Satellite for Multimedia Application in the Ka Band

    In this article, we are going to do a study that consist in the configuration of a link between an earth station to broadcast multimedia service and a user of this service via a geostationary satellite in Ka- band and the set up of the different components of this link and then to make the calculation of the link budget for this system. The application carried out in this work, allows us to calculate the link budget in both directions: the uplink and downlink, as well as all parameters used in the calculation and the development of a link budget. Finally, we will try to verify using the application developed the feasibility of implementation of this system.

    Network Reconfiguration for Load Balancing in Distribution System with Distributed Generation and Capacitor Placement
    This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is used to determine the loading conditions of the system and maximum system loading capacity. The index value has to be minimum in the optimal network reconfiguration of load balancing. A method based on Tabu search algorithm, The Tabu search algorithm is employed to search for the optimal network reconfiguration. The basic idea behind the search is a move from a current solution to its neighborhood by effectively utilizing a memory to provide an efficient search for optimality. It presents low computational effort and is able to find good quality configurations. Simulation results for a radial 69-bus system with distributed generations and capacitors placement. The study results show that the optimal on/off patterns of the switches can be identified to give the best network reconfiguration involving balancing of feeder loads while respecting all the constraints.
    Color View Synthesis for Animated Depth Security X-ray Imaging
    We demonstrate the synthesis of intermediary views within a sequence of color encoded, materials discriminating, X-ray images that exhibit animated depth in a visual display. During the image acquisition process, the requirement for a linear X-ray detector array is replaced by synthetic image. Scale Invariant Feature Transform, SIFT, in combination with material segmented morphing is employed to produce synthetic imagery. A quantitative analysis of the feature matching performance of the SIFT is presented along with a comparative study of the synthetic imagery. We show that the total number of matches produced by SIFT reduces as the angular separation between the generating views increases. This effect is accompanied by an increase in the total number of synthetic pixel errors. The trends observed are obtained from 15 different luggage items. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.
    A Novel Approach for Tracking of a Mobile Node Based on Particle Filter and Trilateration
    This paper evaluates the performance of a novel algorithm for tracking of a mobile node, interms of execution time and root mean square error (RMSE). Particle Filter algorithm is used to track the mobile node, however a new technique in particle filter algorithm is also proposed to reduce the execution time. The stationary points were calculated through trilateration and finally by averaging the number of points collected for a specific time, whereas tracking is done through trilateration as well as particle filter algorithm. Wi-Fi signal is used to get initial guess of the position of mobile node in x-y coordinates system. Commercially available software “Wireless Mon" was used to read the WiFi signal strength from the WiFi card. Visual Cµ version 6 was used to interact with this software to read only the required data from the log-file generated by “Wireless Mon" software. Results are evaluated through mathematical modeling and MATLAB simulation.
    Heuristic Optimization Techniques for Network Reconfiguration in Distribution System
    Network reconfiguration is an operation to modify the network topology. The implementation of network reconfiguration has many advantages such as loss minimization, increasing system security and others. In this paper, two topics about the network reconfiguration in distribution system are briefly described. The first topic summarizes its impacts while the second explains some heuristic optimization techniques for solving the network reconfiguration problem.
    High-Speed High-Gain CMOS OTA for SC Applications
    A fast settling multipath CMOS OTA for high speed switched capacitor applications is presented here. With the basic topology similar to folded-cascode, bandwidth and DC gain of the OTA are enhanced by adding extra paths for signal from input to output. Designed circuit is simulated with HSPICE using level 49 parameters (BSIM 3v3) in 0.35mm standard CMOS technology. DC gain achieved is 56.7dB and Unity Gain Bandwidth (UGB) obtained is 1.15GHz. These results confirm that adding extra paths for signal can improve DC gain and UGB of folded-cascode significantly.
    A Performance Evaluation of Cellular Network Suitability for VANET
    Recently, a vehicular ad-hoc networks(VANETs) for Intelligent Transport System(ITS) have become able safety and convenience services surpassing the simple services such as an electronic toll collection system. To provide the proper services, VANET needs infrastructure over the country infrastructure. Thus, we have to spend a huge sum of human resources. In this reason, several studies have been made on the usage of cellular networks instead of new protocols this study is to assess a performance evaluation of the cellular network for VANET. In this paper, the result of a for the suitability of cellular networks for VANET experiment, The LTE(Long Term Evolution) of cellular networks found to be most suitable among the others cellular networks
    WDM and OCDMA Systems under MAI Effects: A Comparison Analysis
    This paper presents a comparison between Spectrum- Sliced Wavelength Division Multiplexing (SS-WDM) and Spectrum Amplitude Coding Optical Code Division Multiple Access (SAC Optical CDMA) systems for different light sources. The performance of the system is shown in the simulated results of the bit error rate (BER) and the eye diagram of both systems. The comparison results indicate that the Multiple Access Interference (MAI) effects have a significant impact on SS-WDM over SAC Optical CDMA systems. Finally, in terms of spectral efficiency at constant BER of 10-12, SSWDM offers higher spectral efficiency than optical CDMA since no bandwidth expansion in needed.
    Object Tracking System Using Camshift, Meanshift and Kalman Filter

    This paper presents a implementation of an object tracking system in a video sequence. This object tracking is an important task in many vision applications. The main steps in video analysis are two: detection of interesting moving objects and tracking of such objects from frame to frame. In a similar vein, most tracking algorithms use pre-specified methods for preprocessing. In our work, we have implemented several object tracking algorithms (Meanshift, Camshift, Kalman filter) with different preprocessing methods. Then, we have evaluated the performance of these algorithms for different video sequences. The obtained results have shown good performances according to the degree of applicability and evaluation criteria.

    Clustering Multivariate Empiric Characteristic Functions for Multi-Class SVM Classification
    A dissimilarity measure between the empiric characteristic functions of the subsamples associated to the different classes in a multivariate data set is proposed. This measure can be efficiently computed, and it depends on all the cases of each class. It may be used to find groups of similar classes, which could be joined for further analysis, or it could be employed to perform an agglomerative hierarchical cluster analysis of the set of classes. The final tree can serve to build a family of binary classification models, offering an alternative approach to the multi-class SVM problem. We have tested this dendrogram based SVM approach with the oneagainst- one SVM approach over four publicly available data sets, three of them being microarray data. Both performances have been found equivalent, but the first solution requires a smaller number of binary SVM models.