Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 6

Mathematical, Computational, Physical, Electrical and Computer Engineering

  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 6
    2421
    N-Sun Decomposition of Complete Graphs and Complete Bipartite Graphs
    Abstract:
    Graph decompositions are vital in the study of combinatorial design theory. Given two graphs G and H, an H-decomposition of G is a partition of the edge set of G into disjoint isomorphic copies of H. An n-sun is a cycle Cn with an edge terminating in a vertex of degree one attached to each vertex. In this paper we have proved that the complete graph of order 2n, K2n can be decomposed into n-2 n-suns, a Hamilton cycle and a perfect matching, when n is even and for odd case, the decomposition is n-1 n-suns and a perfect matching. For an odd order complete graph K2n+1, delete the star subgraph K1, 2n and the resultant graph K2n is decomposed as in the case of even order. The method of building n-suns uses Walecki's construction for the Hamilton decomposition of complete graphs. A spanning tree decomposition of even order complete graphs is also discussed using the labeling scheme of n-sun decomposition. A complete bipartite graph Kn, n can be decomposed into n/2 n-suns when n/2 is even. When n/2 is odd, Kn, n can be decomposed into (n-2)/2 n-suns and a Hamilton cycle.
    5
    5172
    High Resolution Methods Based On Rank Revealing Triangular Factorizations
    Abstract:

    In this paper, we propose a novel method for subspace estimation used high resolution method without eigendecomposition where the sample Cross-Spectral Matrix (CSM) is replaced by upper triangular matrix obtained from LU factorization. This novel method decreases the computational complexity. The method relies on a recently published result on Rank-Revealing LU (RRLU) factorization. Simulation results demonstrates that the new algorithm outperform the Householder rank-revealing QR (RRQR) factorization method and the MUSIC in the low Signal to Noise Ratio (SNR) scenarios.

    4
    8721
    A Note on Penalized Power-Divergence Test Statistics
    Authors:
    Abstract:

    In this paper, penalized power-divergence test statistics have been defined and their exact size properties to test a nested sequence of log-linear models have been compared with ordinary power-divergence test statistics for various penalization, λ and main effect values. Since the ordinary and penalized power-divergence test statistics have the same asymptotic distribution, comparisons have been only made for small and moderate samples. Three-way contingency tables distributed according to a multinomial distribution have been considered. Simulation results reveal that penalized power-divergence test statistics perform much better than their ordinary counterparts.

    3
    12721
    Persistence of Termination for Non-Overlapping Term Rewriting Systems
    Abstract:
    A property is called persistent if for any many-sorted term rewriting system , has the property if and only if term rewriting system , which results from by omitting its sort information, has the property. In this paper,we show that termination is persistent for non-overlapping term rewriting systems and we give the example as application of this result. Furthermore we obtain that completeness is persistent for non-overlapping term rewriting systems.
    2
    13193
    Strip Decomposition Parallelization of Fast Direct Poisson Solver on a 3D Cartesian Staggered Grid
    Abstract:

    A strip domain decomposition parallel algorithm for fast direct Poisson solver is presented on a 3D Cartesian staggered grid. The parallel algorithm follows the principles of sequential algorithm for fast direct Poisson solver. Both Dirichlet and Neumann boundary conditions are addressed. Several test cases are likewise addressed in order to shed light on accuracy and efficiency in the strip domain parallelization algorithm. Actually the current implementation shows a very high efficiency when dealing with a large grid mesh up to 3.6 * 109 under massive parallel approach, which explicitly demonstrates that the proposed algorithm is ready for massive parallel computing.

    1
    13396
    Persistence of Termination for Term Rewriting Systems with Ordered Sorts
    Abstract:
    A property is persistent if for any many-sorted term rewriting system , has the property if and only if term rewriting system , which results from by omitting its sort information, has the property. Zantema showed that termination is persistent for term rewriting systems without collapsing or duplicating rules. In this paper, we show that the Zantema's result can be extended to term rewriting systems on ordered sorts, i.e., termination is persistent for term rewriting systems on ordered sorts without collapsing, decreasing or duplicating rules. Furthermore we give the example as application of this result. Also we obtain that completeness is persistent for this class of term rewriting systems.