Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 62

Mathematical, Computational, Physical, Electrical and Computer Engineering

  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 62
    Mean Codeword Lengths and Their Correspondence with Entropy Measures
    The objective of the present communication is to develop new genuine exponentiated mean codeword lengths and to study deeply the problem of correspondence between well known measures of entropy and mean codeword lengths. With the help of some standard measures of entropy, we have illustrated such a correspondence. In literature, we usually come across many inequalities which are frequently used in information theory. Keeping this idea in mind, we have developed such inequalities via coding theory approach.
    Mathematical Modeling for Dengue Transmission with the Effect of Season
    Mathematical models can be used to describe the transmission of disease. Dengue disease is the most significant mosquito-borne viral disease of human. It now a leading cause of childhood deaths and hospitalizations in many countries. Variations in environmental conditions, especially seasonal climatic parameters, effect to the transmission of dengue viruses the dengue viruses and their principal mosquito vector, Aedes aegypti. A transmission model for dengue disease is discussed in this paper. We assume that the human and vector populations are constant. We showed that the local stability is completely determined by the threshold parameter, 0 B . If 0 B is less than one, the disease free equilibrium state is stable. If 0 B is more than one, a unique endemic equilibrium state exists and is stable. The numerical results are shown for the different values of the transmission probability from vector to human populations.
    Applications of Entropy Measures in Field of Queuing Theory
    In the present communication, we have studied different variations in the entropy measures in the different states of queueing processes. In case of steady state queuing process, it has been shown that as the arrival rate increases, the uncertainty increases whereas in the case of non-steady birth-death process, it is shown that the uncertainty varies differently. In this pattern, it first increases and attains its maximum value and then with the passage of time, it decreases and attains its minimum value.
    Block Homotopy Perturbation Method for Solving Fuzzy Linear Systems

    In this paper, we present an efficient numerical algorithm, namely block homotopy perturbation method, for solving fuzzy linear systems based on homotopy perturbation method. Some numerical examples are given to show the efficiency of the algorithm.

    Codes and Formulation of Appropriate Constraints via Entropy Measures
    In present communication, we have developed the suitable constraints for the given the mean codeword length and the measures of entropy. This development has proved that Renyi-s entropy gives the minimum value of the log of the harmonic mean and the log of power mean. We have also developed an important relation between best 1:1 code and the uniquely decipherable code by using different measures of entropy.
    On the Fuzzy Difference Equation xn+1 = A +

    In this paper, we study the existence, the boundedness and the asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equations xn+1 = A + k i=0 Bi xn-i , n= 0, 1, · · · . where (xn) is a sequence of positive fuzzy numbers, A,Bi and the initial values x-k, x-k+1, · · · , x0 are positive fuzzy numbers. k ∈ {0, 1, 2, · · ·}.

    Effect of Variable viscosity on Convective Heat Transfer along an Inclined Plate Embedded in Porous Medium with an Applied Magnetic Field
    The flow and heat transfer characteristics for natural convection along an inclined plate in a saturated porous medium with an applied magnetic field have been studied. The fluid viscosity has been assumed to be an inverse function of temperature. Assuming temperature vary as a power function of distance. The transformed ordinary differential equations have solved by numerical integration using Runge-Kutta method. The velocity and temperature profile components on the plate are computed and discussed in detail for various values of the variable viscosity parameter, inclination angle, magnetic field parameter, and real constant (λ). The results have also been interpreted with the aid of tables and graphs. The numerical values of Nusselt number have been calculated for the mentioned parameters.
    Parametric and Nonparametric Analysis of Breast Cancer Treatments
    The objective of the present research manuscript is to perform parametric, nonparametric, and decision tree analysis to evaluate two treatments that are being used for breast cancer patients. Our study is based on utilizing real data which was initially used in “Tamoxifen with or without breast irradiation in women of 50 years of age or older with early breast cancer" [1], and the data is supplied to us by N.A. Ibrahim “Decision tree for competing risks survival probability in breast cancer study" [2]. We agree upon certain aspects of our findings with the published results. However, in this manuscript, we focus on relapse time of breast cancer patients instead of survival time and parametric analysis instead of semi-parametric decision tree analysis is applied to provide more precise recommendations of effectiveness of the two treatments with respect to reoccurrence of breast cancer.
    A Finite-Time Consensus Protocol of the Multi-Agent Systems

    According to conjugate gradient algorithm, a new consensus protocol algorithm of discrete-time multi-agent systems is presented, which can achieve finite-time consensus. Finally, a numerical example is given to illustrate our theoretical result.

    Elastic-Plastic Analysis for Finite Deformation of a Rotating Disk Having Variable Thickness with Inclusion
    Transition theory has been used to derive the elasticplastic and transitional stresses. Results obtained have been discussed numerically and depicted graphically. It is observed that the rotating disk made of incompressible material with inclusion require higher angular speed to yield at the internal surface as compared to disk made of compressible material. It is seen that the radial and circumferential stresses are maximum at the internal surface with and without edge load (for flat disk). With the increase in thickness parameter (k = 2, 4), the circumferential stress is maximum at the external surface while the radial stress is maximum at the internal surface. From the figures drawn the disk with exponentially varying thickness (k = 2), high angular speed is required for initial yielding at internal surface as compared to flat disk and exponentially varying thickness for k = 4 onwards. It is concluded that the disk made of isotropic compressible material is on the safer side of the design as compared to disk made of isotropic incompressible material as it requires higher percentage increase in an angular speed to become fully plastic from its initial yielding.
    Fuzzy Decision Making via Multiple Attribute

    In this paper, a method for decision making in fuzzy environment is presented.A new subjective and objective integrated approach is introduced that used to assign weight attributes in fuzzy multiple attribute decision making (FMADM) problems and alternatives and fmally ranked by proposed method.

    Analysis of Periodic Solution of Delay Fuzzy BAM Neural Networks
    In this paper, by employing a new Lyapunov functional and an elementary inequality analysis technique, some sufficient conditions are derived to ensure the existence and uniqueness of periodic oscillatory solution for fuzzy bi-directional memory (BAM) neural networks with time-varying delays, and all other solutions of the fuzzy BAM neural networks converge the uniqueness periodic solution. These criteria are presented in terms of system parameters and have important leading significance in the design and applications of neural networks. Moreover an example is given to illustrate the effectiveness and feasible of results obtained.
    Dispersion of a Solute in Peristaltic Motion of a Couple Stress Fluid in the Presence of Magnetic Field
    An analytical solution for dispersion of a solute in the peristaltic motion of a couple stress fluid in the presence of magnetic field with both homogeneous and heterogeneous chemical reactions is presented. The average effective dispersion coefficient has been found using Taylor-s limiting condition and long wavelength approximation. The effects of various relevant parameters on the average effective coefficient of dispersion have been studied. The average effective dispersion coefficient tends to decrease with magnetic field parameter, homogeneous chemical reaction rate parameter and amplitude ratio but tends to increase with heterogeneous chemical reaction rate parameter.
    Analytical Solution for the Zakharov-Kuznetsov Equations by Differential Transform Method

    This paper presents the approximate analytical solution of a Zakharov-Kuznetsov ZK(m, n, k) equation with the help of the differential transform method (DTM). The DTM method is a powerful and efficient technique for finding solutions of nonlinear equations without the need of a linearization process. In this approach the solution is found in the form of a rapidly convergent series with easily computed components. The two special cases, ZK(2,2,2) and ZK(3,3,3), are chosen to illustrate the concrete scheme of the DTM method in ZK(m, n, k) equations. The results demonstrate reliability and efficiency of the proposed method.

    Selective Wet-Etching of Amorphous/Crystallized Sb20se80 Thin Films
    The selective wet-etching of amorphous and crystalline region of Sb20Se80 thin films was carried out using organic based solution e.g. amines. We report the development of an in situ real-time method to study the wet chemical etching process of thin films. Characterization of the structure and surface of films studied by X-ray diffraction, SEM and EBSD methods has been done and potential application suggested.
    Neighbors of Indefinite Binary Quadratic Forms
    In this paper, we derive some algebraic identities on right and left neighbors R(F) and L(F) of an indefinite binary quadratic form F = F(x, y) = ax2 + bxy + cy2 of discriminant Δ = b2 -4ac. We prove that the proper cycle of F can be given by using its consecutive left neighbors. Also we construct a connection between right and left neighbors of F.
    Information Measures Based on Sampling Distributions

    Information theory and Statistics play an important role in Biological Sciences when we use information measures for the study of diversity and equitability. In this communication, we develop the link among the three disciplines and prove that sampling distributions can be used to develop new information measures. Our study will be an interdisciplinary and will find its applications in Biological systems.

    Similarity Measures and Weighted Fuzzy C-Mean Clustering Algorithm

    In this paper we study the fuzzy c-mean clustering algorithm combined with principal components method. Demonstratively analysis indicate that the new clustering method is well rather than some clustering algorithms. We also consider the validity of clustering method.

    Exterior Calculus: Economic Growth Dynamics

    Mathematical models of dynamics employing exterior calculus are mathematical representations of the same unifying principle; namely, the description of a dynamic system with a characteristic differential one-form on an odd-dimensional differentiable manifold leads, by analysis with exterior calculus, to a set of differential equations and a characteristic tangent vector (vortex vector) which define transformations of the system. Using this principle, a mathematical model for economic growth is constructed by proposing a characteristic differential one-form for economic growth dynamics (analogous to the action in Hamiltonian dynamics), then generating a pair of characteristic differential equations and solving these equations for the rate of economic growth as a function of labor and capital. By contracting the characteristic differential one-form with the vortex vector, the Lagrangian for economic growth dynamics is obtained.

    A Novel System of Two Coupled Equations for the Longitudinal Components of the Electromagnetic Field in a Waveguide
    In this paper, a novel wave equation for electromagnetic waves in a medium having anisotropic permittivity has been derived with the help of Maxwell-s curl equations. The x and y components of the Maxwell-s equations are written with the permittivity () being a 3 × 3 symmetric matrix. These equations are solved for Ex , Ey, Hx, Hy in terms of Ez, Hz, and the partial derivatives. The Z components of the Maxwell-s curl are then used to arrive to the generalized Helmholtz equations for Ez and Hz.
    Three Steps of One-way Nested Grid for Energy Balance Equations by Wave Model
    The three steps of the standard one-way nested grid for a regional scale of the third generation WAve Model Cycle 4 (WAMC4) is scrutinized. The model application is enabled to solve the energy balance equation on a coarse resolution grid in order to produce boundary conditions for a smaller area by the nested grid technique. In the present study, the model takes a full advantage of the fine resolution of wind fields in space and time produced by the available U.S. Navy Global Atmospheric Prediction System (NOGAPS) model with 1 degree resolution. The nested grid application of the model is developed in order to gradually increase the resolution from the open ocean towards the South China Sea (SCS) and the Gulf of Thailand (GoT) respectively. The model results were compared with buoy observations at Ko Chang, Rayong and Huahin locations which were obtained from the Seawatch project. In addition, the results were also compared with Satun based weather station which was provided from Department of Meteorology, Thailand. The data collected from this station presented the significant wave height (Hs) reached 12.85 m. The results indicated that the tendency of the Hs from the model in the spherical coordinate propagation with deep water condition in the fine grid domain agreed well with the Hs from the observations.
    Comparison Results of Two-point Fuzzy Boundary Value Problems

    This paper investigates the solutions of two-point fuzzy boundary value problems as the form x = f(t, x(t)), x(0) = A and x(l) = B, where A and B are fuzzy numbers. There are four different solutions for the problems when the lateral type of H-derivative is employed to solve the problems. As f(t, x) is a monotone function of x, these four solutions are reduced to two different solutions. As f(t, x(t)) = λx(t) or f(t, x(t)) = -λx(t), solutions and several comparison results are presented to indicate advantages of each solution.

    Free Convection Boundary Layer Flow of a Viscoelastic Fluid in the Presence of Heat Generation
    The present paper considers the steady free convection boundary layer flow of a viscoelastics fluid with constant temperature in the presence of heat generation. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. The governing boundary layer equations are first transformed into non-dimensional form by using special dimensionless group. Computations are performed numerically by using Keller-box method by augmenting an extra boundary condition at infinity and the results are displayed graphically to illustrate the influence of viscoelastic K, heat generation γ , and Prandtl Number, Pr parameters on the velocity and temperature profiles. The results of the surface shear stress in terms of the local skin friction and the surface rate of heat transfer in terms of the local Nusselt number for a selection of the heat generation parameterγ (=0.0, 0.2, 0.5, 0.8, 1.0) are obtained and presented in both tabular and graphical formats. Without effect of the internal heat generation inside the fluid domain for which we take γ = 0.0, the present numerical results show an excellent agreement with previous publication.
    Performance Comparison of Parallel Sorting Algorithms on the Cluster of Workstations

    Sorting appears the most attention among all computational tasks over the past years because sorted data is at the heart of many computations. Sorting is of additional importance to parallel computing because of its close relation to the task of routing data among processes, which is an essential part of many parallel algorithms. Many parallel sorting algorithms have been investigated for a variety of parallel computer architectures. In this paper, three parallel sorting algorithms have been implemented and compared in terms of their overall execution time. The algorithms implemented are the odd-even transposition sort, parallel merge sort and parallel rank sort. Cluster of Workstations or Windows Compute Cluster has been used to compare the algorithms implemented. The C# programming language is used to develop the sorting algorithms. The MPI (Message Passing Interface) library has been selected to establish the communication and synchronization between processors. The time complexity for each parallel sorting algorithm will also be mentioned and analyzed.

    Visualization of Code Clone Detection Results and the Implementation with Structured Data

    This paper describes a code clone visualization method, called FC graph, and the implementation issues. Code clone detection tools usually show the results in a textual representation. If the results are large, it makes a problem to software maintainers with understanding them. One of the approaches to overcome the situation is visualization of code clone detection results. A scatter plot is a popular approach to the visualization. However, it represents only one-to-one correspondence and it is difficult to find correspondence of code clones over multiple files. FC graph represents correspondence among files, code clones and packages in Java. All nodes in FC graph are positioned using force-directed graph layout, which is dynami- cally calculated to adjust the distances of nodes until stabilizing them. We applied FC graph to some open source programs and visualized the results. In the author’s experience, FC graph is helpful to grasp correspondence of code clones over multiple files and also code clones with in a file.

    Calculation of Density for Refrigerant Mixtures in Sub Critical Regions for Use in the Buildings

    Accurate and comprehensive thermodynamic properties of pure and mixture of refrigerants are in demand by both producers and users of these materials. Information about thermodynamic properties is important initially to qualify potential candidates for working fluids in refrigeration machinery. From practical point of view, Refrigerants and refrigerant mixtures are widely used as working fluids in many industrial applications, such as refrigerators, heat pumps, and power plants The present work is devoted to evaluating seven cubic equations of state (EOS) in predicting gas and liquid phase volumetric properties of nine ozone-safe refrigerants both in super and sub-critical regions. The evaluations, in sub-critical region, show that TWU and PR EOS are capable of predicting PVT properties of refrigerants R32 within 2%, R22, R134a, R152a and R143a within 1% and R123, R124, R125, TWU and PR EOS's, from literature data are 0.5% for R22, R32, R152a, R143a, and R125, 1% for R123, R134a, and R141b, and 2% for R124. Moreover, SRK EOS predicts PVT properties of R22, R125, and R123 to within aforementioned errors. The remaining EOS's predicts volumetric properties of this class of fluids with higher errors than those above mentioned which are at most 8%.In general, the results are in favor of the preference of TWU and PR EOS over other remaining EOS's in predicting densities of all mentioned refrigerants in both super and sub critical regions. Typically, this refrigerant is known to offer advantages such as ozone depleting potential equal to zero, Global warming potential equal to 140, and no toxic.

    On Best Estimation for Parameter Weibull Distribution

    The objective of this study is to introduce estimators to the parameters and survival function for Weibull distribution using three different methods, Maximum Likelihood estimation, Standard Bayes estimation and Modified Bayes estimation. We will then compared the three methods using simulation study to find the best one base on MPE and MSE.

    Variation of Uncertainty in Steady And Non-Steady Processes Of Queuing Theory
    Probabilistic measures of uncertainty have been obtained as functions of time and birth and death rates in a queuing process. The variation of different entropy measures has been studied in steady and non-steady processes of queuing theory.
    Non-Polynomial Spline Method for the Solution of Problems in Calculus of Variations
    In this paper, a numerical solution based on nonpolynomial cubic spline functions is used for finding the solution of boundary value problems which arise from the problems of calculus of variations. This approximation reduce the problems to an explicit system of algebraic equations. Some numerical examples are also given to illustrate the accuracy and applicability of the presented method.
    On an Open Problem for Definable Subsets of Covering Approximation Spaces
    Let (U;D) be a Gr-covering approximation space (U; C) with covering lower approximation operator D and covering upper approximation operator D. For a subset X of U, this paper investigates the following three conditions: (1) X is a definable subset of (U;D); (2) X is an inner definable subset of (U;D); (3) X is an outer definable subset of (U;D). It is proved that if one of the above three conditions holds, then the others hold. These results give a positive answer of an open problem for definable subsets of covering approximation spaces.
    Unsteady Free Convection Flow Over a Three-Dimensional Stagnation Point With Internal Heat Generation or Absorption
    This paper considers the effect of heat generation proportional l to (T - T∞ )p , where T is the local temperature and T∞ is the ambient temperature, in unsteady free convection flow near the stagnation point region of a three-dimensional body. The fluid is considered in an ambient fluid under the assumption of a step change in the surface temperature of the body. The non-linear coupled partial differential equations governing the free convection flow are solved numerically using an implicit finite-difference method for different values of the governing parameters entering these equations. The results for the flow and heat characteristics when p ≤ 2 show that the transition from the initial unsteady-state flow to the final steadystate flow takes place smoothly. The behavior of the flow is seen strongly depend on the exponent p.
    A Hybrid DEA Model for the Measurement of the Enviromental Performance

    Data envelopment analysis (DEA) has gained great popularity in environmental performance measurement because it can provide a synthetic standardized environmental performance index when pollutants are suitably incorporated into the traditional DEA framework. Since some of the environmental performance indicators cannot be controlled by companies managers, it is necessary to develop the model in a way that it could be applied when discretionary and/or non-discretionary factors were involved. In this paper, we present a semi-radial DEA approach to measuring environmental performance, which consists of non-discretionary factors. The model, then, has been applied on a real case.

    Gene Expression Data Classification Using Discriminatively Regularized Sparse Subspace Learning
    Sparse representation which can represent high dimensional data effectively has been successfully used in computer vision and pattern recognition problems. However, it doesn-t consider the label information of data samples. To overcome this limitation, we develop a novel dimensionality reduction algorithm namely dscriminatively regularized sparse subspace learning(DR-SSL) in this paper. The proposed DR-SSL algorithm can not only make use of the sparse representation to model the data, but also can effective employ the label information to guide the procedure of dimensionality reduction. In addition,the presented algorithm can effectively deal with the out-of-sample problem.The experiments on gene-expression data sets show that the proposed algorithm is an effective tool for dimensionality reduction and gene-expression data classification.
    Heterogeneous Attribute Reduction in Noisy System based on a Generalized Neighborhood Rough Sets Model
    Neighborhood Rough Sets (NRS) has been proven to be an efficient tool for heterogeneous attribute reduction. However, most of researches are focused on dealing with complete and noiseless data. Factually, most of the information systems are noisy, namely, filled with incomplete data and inconsistent data. In this paper, we introduce a generalized neighborhood rough sets model, called VPTNRS, to deal with the problem of heterogeneous attribute reduction in noisy system. We generalize classical NRS model with tolerance neighborhood relation and the probabilistic theory. Furthermore, we use the neighborhood dependency to evaluate the significance of a subset of heterogeneous attributes and construct a forward greedy algorithm for attribute reduction based on it. Experimental results show that the model is efficient to deal with noisy data.
    Definable Subsets in Covering Approximation Spaces
    Covering approximation spaces is a class of important generalization of approximation spaces. For a subset X of a covering approximation space (U, C), is X definable or rough? The answer of this question is uncertain, which depends on covering approximation operators endowed on (U, C). Note that there are many various covering approximation operators, which can be endowed on covering approximation spaces. This paper investigates covering approximation spaces endowed ten covering approximation operators respectively, and establishes some relations among definable subsets, inner definable subsets and outer definable subsets in covering approximation spaces, which deepens some results on definable subsets in approximation spaces.
    Delay-Dependent H∞ Performance Analysis for Markovian Jump Systems with Time-Varying Delays

    This paper considers ­H∞ performance for Markovian jump systems with Time-varying delays. The systems under consideration involve disturbance signal, Markovian switching and timevarying delays. By using a new Lyapunov-Krasovskii functional and a convex optimization approach, a delay-dependent stability condition in terms of linear matrix inequality (LMI) is addressed, which guarantee asymptotical stability in mean square and a prescribed ­H∞ performance index for the considered systems. Two numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed main results. All these results are expected to be of use in the study of stochastic systems with time-varying delays.

    Normalization and Constrained Optimization of Measures of Fuzzy Entropy
    In the literature of information theory, there is necessity for comparing the different measures of fuzzy entropy and this consequently, gives rise to the need for normalizing measures of fuzzy entropy. In this paper, we have discussed this need and hence developed some normalized measures of fuzzy entropy. It is also desirable to maximize entropy and to minimize directed divergence or distance. Keeping in mind this idea, we have explained the method of optimizing different measures of fuzzy entropy.
    Implicit Two Step Continuous Hybrid Block Methods with Four Off-Steps Points for Solving Stiff Ordinary Differential Equation
    In this paper, a self starting two step continuous block hybrid formulae (CBHF) with four Off-step points is developed using collocation and interpolation procedures. The CBHF is then used to produce multiple numerical integrators which are of uniform order and are assembled into a single block matrix equation. These equations are simultaneously applied to provide the approximate solution for the stiff ordinary differential equations. The order of accuracy and stability of the block method is discussed and its accuracy is established numerically.
    Intuitionistic Fuzzy Points in Semigroups
    The notion of intuitionistic fuzzy sets was introduced by Atanassov as a generalization of the notion of fuzzy sets. Y.B. Jun and S.Z. Song introduced the notion of intuitionistic fuzzy points. In this paper we find some relations between the intuitionistic fuzzy ideals of a semigroup S and the set of all intuitionistic fuzzy points of S.
    Time Series Forecasting Using a Hybrid RBF Neural Network and AR Model Based On Binomial Smoothing

    ANNARIMA that combines both autoregressive integrated moving average (ARIMA) model and artificial neural network (ANN) model is a valuable tool for modeling and forecasting nonlinear time series, yet the over-fitting problem is more likely to occur in neural network models. This paper provides a hybrid methodology that combines both radial basis function (RBF) neural network and auto regression (AR) model based on binomial smoothing (BS) technique which is efficient in data processing, which is called BSRBFAR. This method is examined by using the data of Canadian Lynx data. Empirical results indicate that the over-fitting problem can be eased using RBF neural network based on binomial smoothing which is called BS-RBF, and the hybrid model–BS-RBFAR can be an effective way to improve forecasting accuracy achieved by BSRBF used separately.

    Optimal Control of Piezo-Thermo-Elastic Beams

    This paper presents the vibrations suppression of a thermoelastic beam subject to sudden heat input by a distributed piezoelectric actuators. An optimization problem is formulated as the minimization of a quadratic functional in terms of displacement and velocity at a given time and with the least control effort. The solution method is based on a combination of modal expansion and variational approaches. The modal expansion approach is used to convert the optimal control of distributed parameter system into the optimal control of lumped parameter system. By utilizing the variational approach, an explicit optimal control law is derived and the determination of the corresponding displacement and velocity is reduced to solving a set of ordinary differential equations.

    Fourier Spectral Method for Analytic Continuation

    The numerical analytic continuation of a function f(z) = f(x + iy) on a strip is discussed in this paper. The data are only given approximately on the real axis. The periodicity of given data is assumed. A truncated Fourier spectral method has been introduced to deal with the ill-posedness of the problem. The theoretic results show that the discrepancy principle can work well for this problem. Some numerical results are also given to show the efficiency of the method.

    The Effects of Peristalsis on Dispersion of a Micropolar Fluid in the Presence of Magnetic Field
    The paper presents an analytical solution for dispersion of a solute in the peristaltic motion of a micropolar fluid in the presence of magnetic field and both homogeneous and heterogeneous chemical reactions. The average effective dispersion coefficient has been found using Taylor-s limiting condition under long wavelength approximation. The effects of various relevant parameters on the average coefficient of dispersion have been studied. The average effective dispersion coefficient increases with amplitude ratio, cross viscosity coefficient and heterogeneous chemical reaction rate parameter. But it decreases with magnetic field parameter and homogeneous chemical reaction rate parameter. It can be noted that the presence of peristalsis enhances dispersion of a solute.
    A New Splitting H1-Galerkin Mixed Method for Pseudo-hyperbolic Equations

    A new numerical scheme based on the H1-Galerkin mixed finite element method for a class of second-order pseudohyperbolic equations is constructed. The proposed procedures can be split into three independent differential sub-schemes and does not need to solve a coupled system of equations. Optimal error estimates are derived for both semidiscrete and fully discrete schemes for problems in one space dimension. And the proposed method dose not requires the LBB consistency condition. Finally, some numerical results are provided to illustrate the efficacy of our method.

    Learning an Overcomplete Dictionary using a Cauchy Mixture Model for Sparse Decay
    An algorithm for learning an overcomplete dictionary using a Cauchy mixture model for sparse decomposition of an underdetermined mixing system is introduced. The mixture density function is derived from a ratio sample of the observed mixture signals where 1) there are at least two but not necessarily more mixture signals observed, 2) the source signals are statistically independent and 3) the sources are sparse. The basis vectors of the dictionary are learned via the optimization of the location parameters of the Cauchy mixture components, which is shown to be more accurate and robust than the conventional data mining methods usually employed for this task. Using a well known sparse decomposition algorithm, we extract three speech signals from two mixtures based on the estimated dictionary. Further tests with additive Gaussian noise are used to demonstrate the proposed algorithm-s robustness to outliers.
    Two-step Iterative Process For Common Fixed Points of Two Asymptotically Quasi-nonexpansive Mappings
    In this paper, we consider an iteration process for approximating common fixed points of two asymptotically quasinonexpansive mappings and we prove some strong and weak convergence theorems for such mappings in uniformly convex Banach spaces.
    Mathematical Model for the Transmission of Two Plasmodium Malaria
    Malaria is transmitted to the human by biting of infected Anopheles mosquitoes. This disease is a serious, acute and chronic relapsing infection to humans. Fever, nausea, vomiting, back pain, increased sweating anemia and splenomegaly (enlargement of the spleen) are the symptoms of the patients who infected with this disease. It is caused by the multiplication of protozoa parasite of the genus Plasmodium. Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale are the four types of Plasmodium malaria. A mathematical model for the transmission of Plasmodium Malaria is developed in which the human and vector population are divided into two classes, the susceptible and the infectious classes. In this paper, we formulate the dynamical model of Plasmodium falciparum and Plasmodium vivax malaria. The standard dynamical analysis is used for analyzing the behavior for the transmission of this disease. The Threshold condition is found and numerical results are shown to confirm the analytical results.
    Generalised Slant Weighted Toeplitz Operator
    A slant weighted Toeplitz operator Aφ is an operator on L2(β) defined as Aφ = WMφ where Mφ is the weighted multiplication operator and W is an operator on L2(β) given by We2n = βn β2n en, {en}n∈Z being the orthonormal basis. In this paper, we generalise Aφ to the k-th order slant weighted Toeplitz operator Uφ and study its properties.
    Octonionic Reformulation of Vector Analysis
    According to celebrated Hurwitz theorem, there exists four division algebras consisting of R (real numbers), C (complex numbers), H (quaternions) and O (octonions). Keeping in view the utility of octonion variable we have tried to extend the three dimensional vector analysis to seven dimensional one. Starting with the scalar and vector product in seven dimensions, we have redefined the gradient, divergence and curl in seven dimension. It is shown that the identity n(n - 1)(n - 3)(n - 7) = 0 is satisfied only for 0, 1, 3 and 7 dimensional vectors. We have tried to write all the vector inequalities and formulas in terms of seven dimensions and it is shown that same formulas loose their meaning in seven dimensions due to non-associativity of octonions. The vector formulas are retained only if we put certain restrictions on octonions and split octonions.
    Iterative Methods for Computing the Weighted Minkowski Inverses of Matrices in Minkowski Space

    In this note, we consider a family of iterative formula for computing the weighted Minskowski inverses AM,N in Minskowski space, and give two kinds of iterations and the necessary and sufficient conditions of the convergence of iterations.

    Dispersion of a Solute in Peristaltic Motion of a Couple Stress Fluid through a Porous Medium with Slip Condition
    The paper presents an analytical solution for dispersion of a solute in the peristaltic motion of a couple stress fluid through a porous medium with slip condition in the presence of both homogeneous and heterogeneous chemical reactions. The average effective dispersion coefficient has been found using Taylor-s limiting condition and long wavelength approximation. The effects of various relevant parameters on the average coefficient of dispersion have been studied. The average effective dispersion coefficient tends to increase with permeability parameter but tends to decrease with homogeneous chemical reaction rate parameter, couple stress parameter, slip parameter and heterogeneous reaction rate parameter.
    Dynamics of a Discrete Three Species Food Chain System

    The main purpose of this paper is to investigate a discrete time three–species food chain system with ratio dependence. By employing coincidence degree theory and analysis techniques, sufficient conditions for existence of periodic solutions are established.

    On Certain Estimates Of Rough Oscillatory Singular Integrals

    We obtain appropriate sharp estimates for rough oscillatory integrals. Our results represent significant improvements as well as natural extensions of what was known previously.

    MPSO based Model Order Formulation Technique for SISO Continuous Systems
    This paper proposes a new version of the Particle Swarm Optimization (PSO) namely, Modified PSO (MPSO) for model order formulation of Single Input Single Output (SISO) linear time invariant continuous systems. In the General PSO, the movement of a particle is governed by three behaviors namely inertia, cognitive and social. The cognitive behavior helps the particle to remember its previous visited best position. In Modified PSO technique split the cognitive behavior into two sections like previous visited best position and also previous visited worst position. This modification helps the particle to search the target very effectively. MPSO approach is proposed to formulate the higher order model. The method based on the minimization of error between the transient responses of original higher order model and the reduced order model pertaining to the unit step input. The results obtained are compared with the earlier techniques utilized, to validate its ease of computation. The proposed method is illustrated through numerical example from literature.
    Finite Volume Model to Study the Effect of Buffer on Cytosolic Ca2+ Advection Diffusion
    Calcium [Ca2+] is an important second messenger which plays an important role in signal transduction. There are several parameters that affect its concentration profile like buffer source etc. The effect of stationary immobile buffer on Ca2+ concentration has been incorporated which is a very important parameter needed to be taken into account in order to make the model more realistic. Interdependence of all the important parameters like diffusion coefficient and influx over [Ca2+] profile has been studied. Model is developed in the form of advection diffusion equation together with buffer concentration. A program has been developed using finite volume method for the entire problem and simulated on an AMD-Turion 32-bit machine to compute the numerical results.
    A New Approach to the Approximate Solutions of Hamilton-Jacobi Equations

    We propose a new approach on how to obtain the approximate solutions of Hamilton-Jacobi (HJ) equations. The process of the approximation consists of two steps. The first step is to transform the HJ equations into the virtual time based HJ equations (VT-HJ) by introducing a new idea of ‘virtual-time’. The second step is to construct the approximate solutions of the HJ equations through a computationally iterative procedure based on the VT-HJ equations. It should be noted that the approximate feedback solutions evolve by themselves as the virtual-time goes by. Finally, we demonstrate the effectiveness of our approximation approach by means of simulations with linear and nonlinear control problems.

    Stability of Discrete Linear Systems with Periodic Coefficients under Parametric Perturbations
    This paper studies the problem of exponential stability of perturbed discrete linear systems with periodic coefficients. Assuming that the unperturbed system is exponentially stable we obtain conditions on the perturbations under which the perturbed system is exponentially stable.
    Improving Classification in Bayesian Networks using Structural Learning
    Naïve Bayes classifiers are simple probabilistic classifiers. Classification extracts patterns by using data file with a set of labeled training examples and is currently one of the most significant areas in data mining. However, Naïve Bayes assumes the independence among the features. Structural learning among the features thus helps in the classification problem. In this study, the use of structural learning in Bayesian Network is proposed to be applied where there are relationships between the features when using the Naïve Bayes. The improvement in the classification using structural learning is shown if there exist relationship between the features or when they are not independent.
    The Research and Application of M/M/1/N Queuing Model with Variable Input Rates, Variable Service Rates and Impatient Customers
    How to maintain the service speeds for the business to make the biggest profit is a problem worthy of study, which is discussed in this paper with the use of queuing theory. An M/M/1/N queuing model with variable input rates, variable service rates and impatient customers is established, and the following conclusions are drawn: the stationary distribution of the model, the relationship between the stationary distribution and the probability that there are n customers left in the system when a customer leaves (not including the customer who leaves himself), the busy period of the system, the average operating cycle, the loss probability for the customers not entering the system while they arriving at the system, the mean of the customers who leaves the system being for impatient, the loss probability for the customers not joining the queue due to the limited capacity of the system and many other indicators. This paper also indicates that the following conclusion is not correct: the more customers the business serve, the more profit they will get. At last, this paper points out the appropriate service speeds the business should keep to make the biggest profit.
    Periodic Solutions for a Higher Order Nonlinear Neutral Functional Differential Equation

    In this paper, a higher order nonlinear neutral functional differential equation with distributed delay is studied by using the continuation theorem of coincidence degree theory. Some new results on the existence of periodic solutions are obtained.

    On Completely Semiprime, Semiprime and Prime Fuzzy Ideals in Ordered Semigroups

    In this paper, we first introduce the new concept of completely semiprime fuzzy ideals of an ordered semigroup S, which is an extension of completely semiprime ideals of ordered semigroup S, and investigate some its related properties. Especially, we characterize an ordered semigroup that is a semilattice of simple ordered semigroups in terms of completely semiprime fuzzy ideals of ordered semigroups. Furthermore, we introduce the notion of semiprime fuzzy ideals of ordered semigroup S and establish the relations between completely semiprime fuzzy ideals and semiprime fuzzy ideals of S. Finally, we give a characterization of prime fuzzy ideals of an ordered semigroup S and show that a nonconstant fuzzy ideal f of an ordered semigroup S is prime if and only if f is twovalued, and max{f(a), f(b)} = inf f((aSb]), ∀a, b ∈ S.

    Investigations on Some Operations of Soft Sets

    Soft set theory was initiated by Molodtsov in 1999. In the past years, this theory had been applied to many branches of mathematics, information science and computer science. In 2003, Maji et al. introduced some operations of soft sets and gave some operational rules. Recently, some of these operational rules are pointed out to be not true. Furthermore, Ali et al., in their paper, introduced and discussed some new operations of soft sets. In this paper, we further investigate these operational rules given by Maji et al. and Ali et al.. We obtain some sufficient-necessary conditions such that corresponding operational rules hold and give correct forms for some operational rules. These results will be help for us to use rightly operational rules of soft sets in research and application of soft set theory.