Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 34

Mathematical, Computational, Physical, Electrical and Computer Engineering

  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 34
    Dynamic Models versus Frailty Models for Recurrent Event Data
    Recurrent event data is a special type of multivariate survival data. Dynamic and frailty models are one of the approaches that dealt with this kind of data. A comparison between these two models is studied using the empirical standard deviation of the standardized martingale residual processes as a way of assessing the fit of the two models based on the Aalen additive regression model. Here we found both approaches took heterogeneity into account and produce residual standard deviations close to each other both in the simulation study and in the real data set.
    Exact Pfaffian and N-Soliton Solutions to a (3+1)-Dimensional Generalized Integrable Nonlinear Partial Differential Equations
    The objective of this paper is to use the Pfaffian technique to construct different classes of exact Pfaffian solutions and N-soliton solutions to some of the generalized integrable nonlinear partial differential equations in (3+1) dimensions. In this paper, I will show that the Pfaffian solutions to the nonlinear PDEs are nothing but Pfaffian identities. Solitons are among the most beneficial solutions for science and technology, from ocean waves to transmission of information through optical fibers or energy transport along protein molecules. The existence of multi-solitons, especially three-soliton solutions, is essential for information technology: it makes possible undisturbed simultaneous propagation of many pulses in both directions.
    Delay-Distribution-Dependent Stability Criteria for BAM Neural Networks with Time-Varying Delays
    This paper is concerned with the delay-distributiondependent stability criteria for bidirectional associative memory (BAM) neural networks with time-varying delays. Based on the Lyapunov-Krasovskii functional and stochastic analysis approach, a delay-probability-distribution-dependent sufficient condition is derived to achieve the globally asymptotically mean square stable of the considered BAM neural networks. The criteria are formulated in terms of a set of linear matrix inequalities (LMIs), which can be checked efficiently by use of some standard numerical packages. Finally, a numerical example and its simulation is given to demonstrate the usefulness and effectiveness of the proposed results.
    A Family of Entropies on Interval-valued Intuitionistic Fuzzy Sets and Their Applications in Multiple Attribute Decision Making

    The entropy of intuitionistic fuzzy sets is used to indicate the degree of fuzziness of an interval-valued intuitionistic fuzzy set(IvIFS). In this paper, we deal with the entropies of IvIFS. Firstly, we propose a family of entropies on IvIFS with a parameter λ ∈ [0, 1], which generalize two entropy measures defined independently by Zhang and Wei, for IvIFS, and then we prove that the new entropy is an increasing function with respect to the parameter λ. Furthermore, a new multiple attribute decision making (MADM) method using entropy-based attribute weights is proposed to deal with the decision making situations where the alternatives on attributes are expressed by IvIFS and the attribute weights information is unknown. Finally, a numerical example is given to illustrate the applications of the proposed method.

    A Family of Improved Secant-Like Method with Super-Linear Convergence

    A family of improved secant-like method is proposed in this paper. Further, the analysis of the convergence shows that this method has super-linear convergence. Efficiency are demonstrated by numerical experiments when the choice of α is correct.

    Application of Novel Conserving Immersed Boundary Method to Moving Boundary Problem

    A new conserving approach in the context of Immersed Boundary Method (IBM) is presented to simulate one dimensional, incompressible flow in a moving boundary problem. The method employs control volume scheme to simulate the flow field. The concept of ghost node is used at the boundaries to conserve the mass and momentum equations. The Present method implements the conservation laws in all cells including boundary control volumes. Application of the method is studied in a test case with moving boundary. Comparison between the results of this new method and a sharp interface (Image Point Method) IBM algorithm shows a well distinguished improvement in both pressure and velocity fields of the present method. Fluctuations in pressure field are fully resolved in this proposed method. This approach expands the IBM capability to simulate flow field for variety of problems by implementing conservation laws in a fully Cartesian grid compared to other conserving methods.

    Entropy Generation for Natural Convection in a Darcy – Brinkman Porous Cavity
    The paper provides a numerical investigation of the entropy generation analysis due to natural convection in an inclined square porous cavity. The coupled equations of mass, momentum, energy and species conservation are solved using the Control Volume Finite-Element Method. Effect of medium permeability and inclination angle on entropy generation is analysed. It was found that according to the Darcy number and the porous thermal Raleigh number values, the entropy generation could be mainly due to heat transfer or to fluid friction irreversibility and that entropy generation reaches extremum values for specific inclination angles.
    Unscented Transformation for Estimating the Lyapunov Exponents of Chaotic Time Series Corrupted by Random Noise

    Many systems in the natural world exhibit chaos or non-linear behavior, the complexity of which is so great that they appear to be random. Identification of chaos in experimental data is essential for characterizing the system and for analyzing the predictability of the data under analysis. The Lyapunov exponents provide a quantitative measure of the sensitivity to initial conditions and are the most useful dynamical diagnostic for chaotic systems. However, it is difficult to accurately estimate the Lyapunov exponents of chaotic signals which are corrupted by a random noise. In this work, a method for estimation of Lyapunov exponents from noisy time series using unscented transformation is proposed. The proposed methodology was validated using time series obtained from known chaotic maps. In this paper, the objective of the work, the proposed methodology and validation results are discussed in detail.

    Orthogonal Array Application and Response Surface Method Approach for Optimal Product Values: An Application for Oil Blending Process

    This paper presents a methodical approach for designing and optimizing process parameters in oil blending industries. Twenty seven replicated experiments were conducted for production of A-Z crown super oil (SAE20W/50) employing L9 orthogonal array to establish process response parameters. Power law model was fitted to experimental data and the obtained model was optimized applying the central composite design (CCD) of response surface methodology (RSM). Quadratic model was found to be significant for production of A-Z crown supper oil. The study recognized and specified four new lubricant formulations that conform to ISO oil standard in the course of analyzing the batch productions of A-Z crown supper oil as: L1: KV = 21.8293Cst, BS200 = 9430.00Litres, Ad102=11024.00Litres, PVI = 2520 Litres, L2: KV = 22.513Cst, BS200 = 12430.00 Litres, Ad102 = 11024.00 Litres, PVI = 2520 Litres, L3: KV = 22.1671Cst, BS200 = 9430.00 Litres, Ad102 = 10481.00 Litres, PVI= 2520 Litres, L4: KV = 22.8605Cst, BS200 = 12430.00 Litres, Ad102 = 10481.00 Litres, PVI = 2520 Litres. The analysis of variance showed that quadratic model is significant for kinematic viscosity production while the R-sq value statistic of 0.99936 showed that the variation of kinematic viscosity is due to its relationship with the control factors. This study therefore resulted to appropriate blending proportions of lubricants base oil and additives and recommends the optimal kinematic viscosity of A-Z crown super oil (SAE20W/50) to be 22.86Cst.

    Viscous Potential Flow Analysis of Electrohydrodynamic Capillary Instability through Porous Media

    The effect of porous medium on the capillary instability of a cylindrical interface in the presence of axial electric field has been investigated using viscous potential flow theory. In viscous potential flow, the viscous term in Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses are not considered. A dispersion relation that accounts for the growth of axisymmetric waves is derived and stability is discussed theoretically as well as numerically. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs have been drawn to show the effect of various physical parameters such as electric field, viscosity ratio, permittivity ratio on the stability of the system. It has been observed that the axial electric field and porous medium both have stabilizing effect on the stability of the system.

    Metal-Dielectric Antireflection Coating on Metallic Substrate for Solar Selective Absorbers of Concentrating Solar Power Systems

    We design and discuss metal-dielectric antireflection coating on metallic substrates for Solar Selective Absorbers of Concentrating Solar Power Systems. The average reflectance is 8.5% at 400-3000nm and 84.4% at 3000nm-10000nm of the metal-dielectric structure.

    A New Seed Projection Method for Solving Shifted Systems with Multiple Right-Hand Sides

    In this paper, we propose a new seed projection method for solving shifted systems with multiple right-hand sides. This seed projection method uses a seed selection strategy. Numerical experiments are presented to show the efficiency of the newly method.

    Inferences on Compound Rayleigh Parameters with Progressively Type-II Censored Samples

    This paper considers inference under progressive type II censoring with a compound Rayleigh failure time distribution. The maximum likelihood (ML), and Bayes methods are used for estimating the unknown parameters as well as some lifetime parameters, namely reliability and hazard functions. We obtained Bayes estimators using the conjugate priors for two shape and scale parameters. When the two parameters are unknown, the closed-form expressions of the Bayes estimators cannot be obtained. We use Lindley.s approximation to compute the Bayes estimates. Another Bayes estimator has been obtained based on continuous-discrete joint prior for the unknown parameters. An example with the real data is discussed to illustrate the proposed method. Finally, we made comparisons between these estimators and the maximum likelihood estimators using a Monte Carlo simulation study.

    A Fully Implicit Finite-Difference Solution to One Dimensional Coupled Nonlinear Burgers’ Equations

    A fully implicit finite-difference method has been proposed for the numerical solutions of one dimensional coupled nonlinear Burgers’ equations on the uniform mesh points. The method forms a system of nonlinear difference equations which is to be solved at each iteration. Newton’s iterative method has been implemented to solve this nonlinear assembled system of equations. The linear system has been solved by Gauss elimination method with partial pivoting algorithm at each iteration of Newton’s method. Three test examples have been carried out to illustrate the accuracy of the method. Computed solutions obtained by proposed scheme have been compared with analytical solutions and those already available in the literature by finding L2 and L∞ errors.

    Thermal Analysis of Toroidal Transformers Using Finite Element Method
    In this paper a three dimensional thermal model of a power toroidal transformer is proposed for both steady-state or transient conditions. The influence of electric current and ambient temperature on the temperature distribution, has been investigated. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.
    An Accurate Computation of Block Hybrid Method for Solving Stiff Ordinary Differential Equations
    In this paper, self-starting block hybrid method of order (5,5,5,5)T is proposed for the solution of the special second order ordinary differential equations with associated initial or boundary conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block method are tested on stiff ordinary differential equations, and the results obtained compared favorably with the exact solution.
    Development of a New CFD Multi-Coupling Tool Based on Immersed Boundary Method: toward SRM Analysis
    The ongoing effort to develop an in-house compressible solver with multi-disciplinary physics is presented in this paper. Basic compressible solver combined with IBM technique provides us an effective numerical tool able to tackle the physics phenomena and especially physic phenomena involved in Solid Rocket Motors (SRMs). Main principles are introduced step by step describing its implementation. This paper sheds light on the whole potentiality of our proposed numerical model and we strongly believe a way to introduce multi-physics mechanisms strongly coupled is opened to ablation in nozzle, fluid/structure interaction and burning propellant surface with time.
    Numerical Solution of Hammerstein Integral Equations by Using Quasi-Interpolation

    In this paper first, a numerical method based on quasiinterpolation for solving nonlinear Fredholm integral equations of the Hammerstein-type is presented. Then, we approximate the solution of Hammerstein integral equations by Nystrom’s method. Also, we compare the methods with some numerical examples.

    Mathematical Model of Depletion of Forestry Resource: Effect of Synthetic Based Industries

    A mathematical model is proposed considering the forest biomass density B(t), density of wood based industries W(t) and density of synthetic industries S(t). It is assumed that the forest biomass grows logistically in the absence of wood based industries, but depletion of forestry biomass is due to presence of wood based industries. The growth of wood based industries depends on B(t), while S(t) grows at a constant rate, independent of B(t). Further there is a competition between W(t) and S(t) according to market demand. The proposed model has four ecologically feasible steady states, namely, E1: forest biomass free and wood industries free equilibrium; E2: wood industries free equilibrium and two coexisting equilibria E∗1 , E∗2 . Behavior of the system near all feasible equilibria is analyzed using the stability theory of differential equations. In the proposed model, the natural depletion rate h1 is a crucial parameter and system exhibits Hopf-bifurcation about the non-trivial equilibrium with respect to h1. The analytical results are verified using numerical simulation.

    Existence of Iterative Cauchy Fractional Differential Equation

    Our main aim in this paper is to use the technique of non expansive operators to more general iterative and non iterative fractional differential equations (Cauchy type ). The non integer case is taken in sense of Riemann-Liouville fractional operators. Applications are illustrated.

    Analysis of Mathematical Models and Their Application to Extreme Events

    This paper discusses the application of extreme events distribution taking the Limpopo River Basin at Xai-Xai station, in Mozambique, as a case analysis. We analyze the extreme value concepts, namely Gumbel, Fréchet, Weibull and Generalized Extreme Value Distributions and then extrapolate the original data to 1000, 5000 and 10000 figures for further simulations and we compare their outcomes based on these three main distributions.

    Packing and Covering Radii of Linear Error-Block Codes

    Linear error-block codes are a natural generalization of linear error correcting codes. The purpose of this paper is to generalize some results on the packing and the covering radii to the error-block case. We study their properties when a code undergoes some specific modifications and combinations with another code. We give a few bounds on the packing and the covering radii of these codes.

    Grid–SVC: An Improvement in SVC Algorithm, Based On Grid Based Clustering

    Support vector clustering (SVC) is an important kernelbased clustering algorithm in multi applications. It has got two main bottle necks, the high computation price and labeling piece. In this paper, we presented a modified SVC method, named Grid–SVC, to improve the original algorithm computationally. First we normalized and then we parted the interval, where the SVC is processing, using a novel Grid–based clustering algorithm. The algorithm parts the intervals, based on the density function of the data set and then applying the cartesian multiply makes multi-dimensional grids. Eliminating many outliers and noise in the preprocess, we apply an improved SVC method to each parted grid in a parallel way. The experimental results show both improvement in time complexity order and the accuracy.

    Complex Dynamic Behaviors in an Ivlev-type Stage-structured Predator-prey System Concerning Impulsive Control Strategy

    An Ivlev-type predator-prey system and stage-structured for predator concerning impulsive control strategy is considered. The conditions for the locally asymptotically stable prey-eradication periodic solution is obtained, by using Floquet theorem and small amplitude perturbation skills——when the impulsive period is less than the critical value. Otherwise, the system is permanence. Numerical examples show that the system considered has more complicated dynamics, including high-order quasi-periodic and periodic oscillating, period-doubling and period-halving bifurcation, chaos and attractor crisis, etc. Finally, the biological implications of the results and the impulsive control strategy are discussed.

    Inexact Alternating Direction Method for Variational Inequality Problems with Linear Equality Constraints

    In this article, a new inexact alternating direction method(ADM) is proposed for solving a class of variational inequality problems. At each iteration, the new method firstly solves the resulting subproblems of ADM approximately to generate an temporal point ˜xk, and then the multiplier yk is updated to get the new iterate yk+1. In order to get xk+1, we adopt a new descent direction which is simple compared with the existing prediction-correction type ADMs. For the inexact ADM, the resulting proximal subproblem has closedform solution when the proximal parameter and inexact term are chosen appropriately. We show the efficiency of the inexact ADM numerically by some preliminary numerical experiments.

    Dense Chaos in Coupled Map Lattices

    This paper is mainly concerned with a kind of coupled map lattices (CMLs). New definitions of dense δ-chaos and dense chaos (which is a special case of dense δ-chaos with δ = 0) in discrete spatiotemporal systems are given and sufficient conditions for these systems to be densely chaotic or densely δ-chaotic are derived.

    Reliability Approximation through the Discretization of Random Variables using Reversed Hazard Rate Function

    Sometime it is difficult to determine the exact reliability for complex systems in analytical procedures. Approximate solution of this problem can be provided through discretization of random variables. In this paper we describe the usefulness of discretization of a random variable using the reversed hazard rate function of its continuous version. Discretization of the exponential distribution has been demonstrated. Applications of this approach have also been cited. Numerical calculations indicate that the proposed approach gives very good approximation of reliability of complex systems under stress-strength set-up. The performance of the proposed approach is better than the existing discrete concentration method of discretization. This approach is conceptually simple, handles analytic intractability and reduces computational time. The approach can be applied in manufacturing industries for producing high-reliable items.

    Analysis of GI/M(n)/1/N Queue with Single Working Vacation and Vacation Interruption

    This paper presents a finite buffer renewal input single working vacation and vacation interruption queue with state dependent services and state dependent vacations, which has a wide range of applications in several areas including manufacturing, wireless communication systems. Service times during busy period, vacation period and vacation times are exponentially distributed and are state dependent. As a result of the finite waiting space, state dependent services and state dependent vacation policies, the analysis of these queueing models needs special attention. We provide a recursive method using the supplementary variable technique to compute the stationary queue length distributions at pre-arrival and arbitrary epochs. An efficient computational algorithm of the model is presented which is fast and accurate and easy to implement. Various performance measures have been discussed. Finally, some special cases and numerical results have been depicted in the form of tables and graphs. 

    Some Preconditioners for Block Pentadiagonal Linear Systems Based on New Approximate Factorization Methods

    In this paper, getting an high-efficiency parallel algorithm to solve sparse block pentadiagonal linear systems suitable for vectors and parallel processors, stair matrices are used to construct some parallel polynomial approximate inverse preconditioners. These preconditioners are appropriate when the desired target is to maximize parallelism. Moreover, some theoretical results about these preconditioners are presented and how to construct preconditioners effectively for any nonsingular block pentadiagonal H-matrices is also described. In addition, the availability of these preconditioners is illustrated with some numerical experiments arising from two dimensional biharmonic equation.

    Properties of a Stochastic Predator-Prey System with Holling II Functional Response

    In this paper, a stochastic predator-prey system with Holling II functional response is studied. First, we show that there is a unique positive solution to the system for any given positive initial value. Then, stochastically bounded of the positive solution to the stochastic system is derived. Moreover, sufficient conditions for global asymptotic stability are also established. In the end, some simulation figures are carried out to support the analytical findings.

    Positive Solutions for Boundary Value Problems of Fourth-Order Nonlinear Singular Differential Equations in Banach Space

    In this paper, by constructing a special non-empty closed convex set and utilizing M¨onch fixed point theory, we investigate the existence of solution for a class of fourth-order singular differential equation in Banach space, which improved and generalized the result of related paper.

    Hall Effect on MHD Mixed Convection Flow of Viscous-Elastic Incompressible Fluid Past of an Infinite Porous Medium

    An unsteady mixed free convection MHD flow of elastic-viscous incompressible fluid past an infinite vertical porous flat plate is investigated when the presence of heat Source/sink, temperature and concentration are assumed to be oscillating with time and hall effect. The governing equations are solved by complex variable technique. The expressions for the velocity field, temperature field and species concentration are demonstrated in graphs. The effects of the Prandtl number, the Grashof number, modified Grashof number, the Schimidt number, the Hall parameter, Elastic parameter & Magnetic parameter are discussed.

    An Approximation Method for Three Quark Systems in the Hyper-Spherical Approach

    The bound state energy of three quark systems is studied in the framework of a non- relativistic spin independent phenomenological model. The hyper- spherical coordinates are considered for the solution this system. According to Jacobi coordinate, we determined the bound state energy for (uud) and (ddu) quark systems, as quarks are flavorless mass, and it is restrict that choice potential at low and high range in nucleon bag for a bound state.

    Construction Methods for Sign Patterns Allowing Nilpotence of Index k

    In this paper, the smallest such integer k is called by the index (of nilpotence) of B such that Bk = 0. In this paper, we study sign patterns allowing nilpotence of index k and obtain four methods to construct sign patterns allowing nilpotence of index at most k, which generalizes some recent results.