Mathematical, Computational, Physical, Electrical and Computer Engineering

Commenced in January 1999 | Frequency: Monthly | Edition: International | Paper Count: 10 |

10

10003883

The Hall Coefficient and Magnetoresistance in Rectangular Quantum Wires with Infinitely High Potential under the Influence of a Laser Radiation

The Hall Coefficient (HC) and the Magnetoresistance (MR) have been studied in two-dimensional systems. The HC and the MR in Rectangular Quantum Wire (RQW) subjected to a crossed DC electric field and magnetic field in the presence of a Strong Electromagnetic Wave (EMW) characterized by electric field are studied in this work. Using the quantum kinetic equation for electrons interacting with optical phonons, we obtain the analytic expressions for the HC and the MR with a dependence on magnetic field, EMW frequency, temperatures of systems and the length characteristic parameters of RQW. These expressions are different from those obtained for bulk semiconductors and cylindrical quantum wires. The analytical results are applied to GaAs/GaAs/Al. For this material, MR depends on the ratio of the EMW frequency to the cyclotron frequency. Indeed, MR reaches a minimum at the ratio 5/4, and when this ratio increases, it tends towards a saturation value. The HC can take negative or positive values. Each curve has one maximum and one minimum. When magnetic field increases, the HC is negative, achieves a minimum value and then increases suddenly to a maximum with a positive value. This phenomenon differs from the one observed in cylindrical quantum wire, which does not have maximum and minimum values.

9

10003713

Influence of an External Magnetic Field on the Acoustomagnetoelectric Field in a Rectangular Quantum Wire with an Infinite Potential by Using a Quantum Kinetic Equation

The acoustomagnetoelectric (AME) field in a rectangular quantum wire with an infinite potential (RQWIP) is calculated in the presence of an external magnetic field (EMF) by using the quantum kinetic equation for the distribution function of electrons system interacting with external phonons and electrons scattering with internal acoustic phonon in a RQWIP. We obtained ananalytic expression for the AME field in the RQWIP in the presence of the EMF. The dependence of AME field on the frequency of external acoustic wave, the temperature T of system, the cyclotron frequency of the EMF and the intensity of the EMF is obtained. Theoretical results for the AME field are numerically evaluated, plotted and discussed for a specific RQWIP GaAs/GaAsAl. This result has shown that the dependence of the AME field on intensity of the EMF is nonlinearly and it is many distinct maxima in the quantized magnetic region. We also compared received fields with those for normal bulk semiconductors, quantum well and quantum wire to show the difference. The influence of an EMF on AME field in a RQWIP is newly developed.

8

10003928

Optimized Algorithm for Particle Swarm Optimization

Particle swarm optimization (PSO) is becoming one of
the most important swarm intelligent paradigms for solving global
optimization problems. Although some progress has been made to
improve PSO algorithms over the last two decades, additional work
is still needed to balance parameters to achieve better numerical
properties of accuracy, efficiency, and stability. In the optimal
PSO algorithm, the optimal weightings of (√ 5 − 1)/2 and (3 − √5)/2 are used for the cognitive factor and the social factor,
respectively. By the same token, the same optimal weightings have
been applied for intensification searches and diversification searches,
respectively. Perturbation and constriction effects are optimally
balanced. Simulations of the de Jong, the Rosenbrock, and the
Griewank functions show that the optimal PSO algorithm indeed
achieves better numerical properties and outperforms the canonical
PSO algorithm.

7

10004049

Status Report of the GERDA Phase II Startup

The GERmanium Detector Array (GERDA) experiment,
located at the Laboratori Nazionali del Gran Sasso (LNGS) of
INFN, searches for 0νββ of 76Ge. Germanium diodes enriched to
∼ 86 % in the double beta emitter 76Ge(enrGe) are exposed being
both source and detectors of 0νββ decay. Neutrinoless double beta
decay is considered a powerful probe to address still open issues
in the neutrino sector of the (beyond) Standard Model of particle
Physics. Since 2013, just after the completion of the first part of its
experimental program (Phase I), the GERDA setup has been upgraded
to perform its next step in the 0νββ searches (Phase II). Phase II aims
to reach a sensitivity to the 0νββ decay half-life larger than 1026 yr
in about 3 years of physics data taking. This exposing a detector
mass of about 35 kg of enrGe and with a background index of about
10^−3 cts/(keV·kg·yr). One of the main new implementations is the
liquid argon scintillation light read-out, to veto those events that only
partially deposit their energy both in Ge and in the surrounding LAr.
In this paper, the GERDA Phase II expected goals, the upgrade work
and few selected features from the 2015 commissioning and 2016
calibration runs will be presented. The main Phase I achievements
will be also reviewed.

6

10004050

Solving the Set Covering Problem Using the Binary Cat Swarm Optimization Metaheuristic

In this paper, we present a binary cat swarm
optimization for solving the Set covering problem. The set covering
problem is a well-known NP-hard problem with many practical
applications, including those involving scheduling, production
planning and location problems. Binary cat swarm optimization
is a recent swarm metaheuristic technique based on the behavior
of discrete cats. Domestic cats show the ability to hunt and are
curious about moving objects. The cats have two modes of behavior:
seeking mode and tracing mode. We illustrate this approach with
65 instances of the problem from the OR-Library. Moreover, we
solve this problem with 40 new binarization techniques and we select
the technical with the best results obtained. Finally, we make a
comparison between results obtained in previous studies and the new
binarization technique, that is, with roulette wheel as transfer function
and V3 as discretization technique.

5

10004071

A Large Ion Collider Experiment (ALICE) Diffractive Detector Control System for RUN-II at the Large Hadron Collider

The selection of diffractive events in the ALICE experiment during the first data taking period (RUN-I) of the Large Hadron Collider (LHC) was limited by the range over which rapidity gaps occur. It would be possible to achieve better measurements by expanding the range in which the production of particles can be detected. For this purpose, the ALICE Diffractive (AD0) detector has been installed and commissioned for the second phase (RUN-II). Any new detector should be able to take the data synchronously with all other detectors and be operated through the ALICE central systems. One of the key elements that must be developed for the AD0 detector is the Detector Control System (DCS). The DCS must be designed to operate safely and correctly this detector. Furthermore, the DCS must also provide optimum operating conditions for the acquisition and storage of physics data and ensure these are of the highest quality. The operation of AD0 implies the configuration of about 200 parameters, from electronics settings and power supply levels to the archiving of operating conditions data and the generation of safety alerts. It also includes the automation of procedures to get the AD0 detector ready for taking data in the appropriate conditions for the different run types in ALICE. The performance of AD0 detector depends on a certain number of parameters such as the nominal voltages for each photomultiplier tube (PMT), their threshold levels to accept or reject the incoming pulses, the definition of triggers, etc. All these parameters define the efficiency of AD0 and they have to be monitored and controlled through AD0 DCS. Finally, AD0 DCS provides the operator with multiple interfaces to execute these tasks. They are realized as operating panels and scripts running in the background. These features are implemented on a SCADA software platform as a distributed control system which integrates to the global control system of the ALICE experiment.

4

10004459

Numerical Applications of Tikhonov Regularization for the Fourier Multiplier Operators

Tikhonov regularization and reproducing kernels are the
most popular approaches to solve ill-posed problems in computational
mathematics and applications. And the Fourier multiplier operators
are an essential tool to extend some known linear transforms
in Euclidean Fourier analysis, as: Weierstrass transform, Poisson
integral, Hilbert transform, Riesz transforms, Bochner-Riesz mean
operators, partial Fourier integral, Riesz potential, Bessel potential,
etc. Using the theory of reproducing kernels, we construct a simple
and efficient representations for some class of Fourier multiplier
operators Tm on the Paley-Wiener space Hh. In addition, we give
an error estimate formula for the approximation and obtain some
convergence results as the parameters and the independent variables
approaches zero. Furthermore, using numerical quadrature integration
rules to compute single and multiple integrals, we give numerical
examples and we write explicitly the extremal function and the
corresponding Fourier multiplier operators.

3

10005160

On Tarski’s Type Theorems for L-Fuzzy Isotone and L-Fuzzy Relatively Isotone Maps on L-Complete Propelattices

Recently a new type of very general relational
structures, the so called (L-)complete propelattices, was introduced.
These significantly generalize complete lattices and completely lattice
L-ordered sets, because they do not assume the technically very
strong property of transitivity. For these structures also the main part
of the original Tarski’s fixed point theorem holds for (L-fuzzy) isotone
maps, i.e., the part which concerns the existence of fixed points and
the structure of their set. In this paper, fundamental properties of
(L-)complete propelattices are recalled and the so called L-fuzzy
relatively isotone maps are introduced. For these maps it is proved
that they also have fixed points in L-complete propelattices, even if
their set does not have to be of an awaited analogous structure of
a complete propelattice.

2

10005391

Module and Comodule Structures on Path Space

On path space kQ, there is a trivial kQa-module structure determined by the multiplication of path algebra kQa and a trivial kQc-comodule structure determined by the comultiplication of path coalgebra kQc. In this paper, on path space kQ, a nontrivial kQa-module structure is defined, and it is proved that this nontrivial left kQa-module structure is isomorphic to the dual module structure of trivial right kQc-comodule. Dually, on path space kQ, a nontrivial kQc-comodule structure is defined, and it is proved that this nontrivial right kQc-comodule structure is isomorphic to the dual comodule structure of trivial left kQa-module. Finally, the trivial and nontrivial module structures on path space are compared from the aspect of submodule, and the trivial and nontrivial comodule structures on path space are compared from the aspect of subcomodule.

1

10006416

First-Principles Density Functional Study of Nitrogen-Doped P-Type ZnO

We present a theoretical investigation on the structural,
electronic properties and vibrational mode of nitrogen impurities
in ZnO. The atomic structures, formation and transition energies
and vibrational modes of (NO3)i interstitial or NO4 substituting
on an oxygen site ZnO were computed using ab initio total energy
methods. Based on Local density functional theory, our calculations
are in agreement with one interpretation of bound-excition
photoluminescence for N-doped ZnO. First-principles calculations
show that (NO3)i defects interstitial or NO4 substituting on an
Oxygen site in ZnO are important suitable impurity for p-type doping
in ZnO. However, many experimental efforts have not resulted in
reproducible p-type material with N2 and N2O doping. by means of
first-principle pseudo-potential calculation we find that the use of NO
or NO2 with O gas might help the experimental research to resolve
the challenge of achieving p-type ZnO.