Mathematical, Computational, Physical, Electrical and Computer Engineering

Commenced in January 1999 | Frequency: Monthly | Edition: International | Paper Count: 13 |

13

10004224

Regionalization of IDF Curves with L-Moments for Storm Events

The construction of Intensity-Duration-Frequency (IDF) curves is one of the most common and useful tools in order to design hydraulic structures and to provide a mathematical relationship between rainfall characteristics. IDF curves, especially those in Peninsular Malaysia, are often built using moving windows of rainfalls. However, these windows do not represent the actual rainfall events since the duration of rainfalls is usually prefixed. Hence, instead of using moving windows, this study aims to find regionalized distributions for IDF curves of extreme rainfalls based on storm events. Homogeneity test is performed on annual maximum of storm intensities to identify homogeneous regions of storms in Peninsular Malaysia. The L-moment method is then used to regionalized Generalized Extreme Value (GEV) distribution of these annual maximums and subsequently. IDF curves are constructed using the regional distributions. The differences between the IDF curves obtained and IDF curves found using at-site GEV distributions are observed through the computation of the coefficient of variation of root mean square error, mean percentage difference and the coefficient of determination. The small differences implied that the construction of IDF curves could be simplified by finding a general probability distribution of each region. This will also help in constructing IDF curves for sites with no rainfall station.

12

10004225

Daily Probability Model of Storm Events in Peninsular Malaysia

Storm Event Analysis (SEA) provides a method to define rainfalls events as storms where each storm has its own amount and duration. By modelling daily probability of different types of storms, the onset, offset and cycle of rainfall seasons can be determined and investigated. Furthermore, researchers from the field of meteorology will be able to study the dynamical characteristics of rainfalls and make predictions for future reference. In this study, four categories of storms; short, intermediate, long and very long storms; are introduced based on the length of storm duration. Daily probability models of storms are built for these four categories of storms in Peninsular Malaysia. The models are constructed by using Bernoulli distribution and by applying linear regression on the first Fourier harmonic equation. From the models obtained, it is found that daily probability of storms at the Eastern part of Peninsular Malaysia shows a unimodal pattern with high probability of rain beginning at the end of the year and lasting until early the next year. This is very likely due to the Northeast monsoon season which occurs from November to March every year. Meanwhile, short and intermediate storms at other regions of Peninsular Malaysia experience a bimodal cycle due to the two inter-monsoon seasons. Overall, these models indicate that Peninsular Malaysia can be divided into four distinct regions based on the daily pattern for the probability of various storm events.

11

10004307

Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm

Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model.

10

10004352

A Survey on the Requirements of University Course Timetabling

Course timetabling problems occur every semester in a university which includes the allocation of resources (subjects, lecturers and students) to a number of fixed rooms and timeslots. The assignment is carried out in a way such that there are no conflicts within rooms, students and lecturers, as well as fulfilling a range of constraints. The constraints consist of rules and policies set up by the universities as well as lecturers’ and students’ preferences of courses to be allocated in specific timeslots. This paper specifically focuses on the preferences of the course timetabling problem in one of the public universities in Malaysia. The demands will be considered into our existing mathematical model to make it more generalized and can be used widely. We have distributed questionnaires to a number of lecturers and students of the university to investigate their demands and preferences for their desired course timetable. We classify the preferences thus converting them to construct one mathematical model that can produce such timetable.

9

10004418

Alternative Computational Arrangements on g-Group (g > 2) Profile Analysis

Alternative and simple computational arrangements in carrying out multivariate profile analysis when more than two groups (populations) are involved are presented. These arrangements have been demonstrated to not only yield equivalent results for the test statistics (the Wilks lambdas), but they have less computational efforts relative to other arrangements so far presented in the literature; in addition to being quite simple and easy to apply.

8

10004442

Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments

Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.

7

10004476

A Prediction Method for Large-Size Event Occurrences in the Sandpile Model

In this research, the occurrences of large size events in various system sizes of the Bak-Tang-Wiesenfeld sandpile model are considered. The system sizes (square lattice) of model considered here are 25×25, 50×50, 75×75 and 100×100. The cross-correlation between the ratio of sites containing 3 grain time series and the large size event time series for these 4 system sizes are also analyzed. Moreover, a prediction method of the large-size event for the 50×50 system size is also introduced. Lastly, it can be shown that this prediction method provides a slightly higher efficiency than random predictions.

6

10004507

Timetabling Communitiesâ€™ Demands for an Effective Examination Timetabling Using Integer Linear Programming

This paper explains the educational timetabling problem, a type of scheduling problem that is considered as one of the most challenging problem in optimization and operational research. The university examination timetabling problem (UETP), which involves assigning a set number of exams into a set number of timeslots whilst fulfilling all required conditions, has been widely investigated. The limitation of available timeslots and resources with the increasing number of examinations are the main reasons in the difficulty of solving this problem. Dynamical change in the examination scheduling system adds up the complication particularly in coping up with the demand and new requirements by the communities. Our objective is to investigate these demands and requirements with subjects taken from Universiti Malaysia Terengganu (UMT), through questionnaires. Integer linear programming model which reflects the preferences obtained to produce an effective examination timetabling was formed.

5

10004544

Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering

Classification is an important data mining technique
and could be used as data filtering in artificial intelligence. The
broad application of classification for all kind of data leads to be
used in nearly every field of our modern life. Classification helps us
to put together different items according to the feature items decided
as interesting and useful. In this paper, we compare two
classification methods Naïve Bayes and ADTree use to detect spam
e-mail. This choice is motivated by the fact that Naive Bayes
algorithm is based on probability calculus while ADTree algorithm is
based on decision tree. The parameter settings of the above
classifiers use the maximization of true positive rate and
minimization of false positive rate. The experiment results present
classification accuracy and cost analysis in view of optimal classifier
choice for Spam Detection. It is point out the number of attributes to
obtain a tradeoff between number of them and the classification
accuracy.

4

10004599

Lyapunov Type Inequalities for Fractional Impulsive Hamiltonian Systems

This paper deals with study about fractional
order impulsive Hamiltonian systems and fractional impulsive
Sturm-Liouville type problems derived from these systems. The
main purpose of this paper devotes to obtain so called Lyapunov
type inequalities for mentioned problems. Also, in view point on
applicability of obtained inequalities, some qualitative properties such
as stability, disconjugacy, nonexistence and oscillatory behaviour of
fractional Hamiltonian systems and fractional Sturm-Liouville type
problems under impulsive conditions will be derived. At the end,
we want to point out that for studying fractional order Hamiltonian
systems, we will apply recently introduced fractional Conformable
operators.

3

10004638

Non-Coplanar Nuclei in Heavy-Ion Reactions

In recent times, we noticed an interesting and important
role of non-coplanar degree-of-freedom (Φ = 00) in heavy ion
reactions. Using the dynamical cluster-decay model (DCM) with
Φ degree-of-freedom included, we have studied three compound
systems 246Bk∗, 164Yb∗ and 105Ag∗. Here, within the DCM with
pocket formula for nuclear proximity potential, we look for the
effects of including compact, non-coplanar configurations (Φc = 00)
on the non-compound nucleus (nCN) contribution in total fusion
cross section σfus. For 246Bk∗, formed in 11B+235U and 14N+232Th
reaction channels, the DCM with coplanar nuclei (Φc = 00) shows
an nCN contribution for 11B+235U channel, but none for 14N+232Th
channel, which on including Φ gives both reaction channels as
pure compound nucleus decays. In the case of 164Yb∗, formed in
64Ni+100Mo, the small nCN effects for Φ=00 are reduced to almost
zero for Φ = 00. Interestingly, however, 105Ag∗ for Φ = 00 shows a
small nCN contribution, which gets strongly enhanced for Φ = 00,
such that the characteristic property of PCN presents a change of
behaviour, like that of a strongly fissioning superheavy element to a
weakly fissioning nucleus; note that 105Ag∗ is a weakly fissioning
nucleus and Psurv behaves like one for a weakly fissioning nucleus
for both Φ = 00 and Φ = 00. Apparently, Φ is presenting itself like
a good degree-of-freedom in the DCM.

2

10004771

On Fourier Type Integral Transform for a Class of Generalized Quotients

In this paper, we investigate certain spaces of
generalized functions for the Fourier and Fourier type integral
transforms. We discuss convolution theorems and establish certain
spaces of distributions for the considered integrals. The new Fourier
type integral is well-defined, linear, one-to-one and continuous with
respect to certain types of convergences. Many properties and an
inverse problem are also discussed in some details.

1

10004822

Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems

Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach.