Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 40

Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering

  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 40
    281
    The Influence of Electrode Heating On the Force Generated On a High Voltage Capacitor with Asymmetrical Electrodes
    Abstract:
    When a high DC voltage is applied to a capacitor with strongly asymmetrical electrodes, it generates a mechanical force that affects the whole capacitor. This is caused by the motion of ions generated around the smaller of the two electrodes and their subsequent interaction with the surrounding medium. If one of the electrodes is heated, it changes the conditions around the capacitor and influences the process of ionisation, thus changing the value of the generated force. This paper describes these changes and gives reasons behind them. Further the experimental results are given as proof of the ionic mechanism of the phenomenon.
    39
    740
    One-Dimensional Numerical Investigation of a Cylindrical Micro-Combustor Applying Electrohydrodynamics Effect
    Abstract:
    In this paper, a one-dimensional numerical approach is used to study the effect of applying electrohydrodynamics on the temperature and species mass fraction profiles along the microcombustor. Premixed mixture is H2-Air with a multi-step chemistry (9 species and 19 reactions). In the micro-scale combustion because of the increasing ratio of area-to-volume, thermal and radical quenching mechanisms are important. Also, there is a significant heat loss from the combustor walls. By inserting a number of electrodes into micro-combustor and applying high voltage to them corona discharge occurs. This leads in moving of induced ions toward natural molecules and colliding with them. So this phenomenon causes the movement of the molecules and reattaches the flow to the walls. It increases the velocity near the walls that reduces the wall boundary layer. Consequently, applying electrohydrodynamics mechanism can enhance the temperature profile in the microcombustor. Ultimately, it prevents the flame quenching in microcombustor.
    38
    1215
    Streamwise Conduction of Nanofluidic Flow in Microchannels
    Abstract:
    The effect of streamwise conduction on the thermal characteristics of forced convection for nanofluidic flow in rectangular microchannel heat sinks under isothermal wall has been investigated. By applying the fin approach, models with and without streamwise conduction term in the energy equation were developed for hydrodynamically and thermally fully-developed flow. These two models were solved to obtain closed form analytical solutions for the nanofluid and solid wall temperature distributions and the analysis emphasized details of the variations induced by the streamwise conduction on the nanofluid heat transport characteristics. The effects of the Peclet number, nanoparticle volume fraction, thermal conductivity ratio on the thermal characteristics of forced convection in microchannel heat sinks are analyzed. Due to the anomalous increase in the effective thermal conductivity of nanofluid compared to its base fluid, the effect of streamwise conduction is expected to be more significant. This study reveals the significance of the effect of streamwise conduction under certain conditions of which the streamwise conduction should not be neglected in the forced convective heat transfer analysis of microchannel heat sinks.
    37
    1632
    The Multi-objective Optimization for the SLS Process Parameters Based on Analytic Hierarchy Process
    Abstract:
    The forming process parameters of Selective Laser Sintering(SLS) directly affect the forming efficiency and forming quality. Therefore, to determine reasonable process parameters is particularly important. In this paper, the weight of each target of the forming quality and efficiency is firstly calculated with the Analytic Hierarchy Process. And then the size of each target is measured by orthogonal experiment. Finally, the sum of the product of each target with the weight is compared to the process parameters in each group and obtained the optimal molding process parameters.
    36
    1796
    A Scatter Search and Help Policies Approaches for a New Mixed Model Assembly Lines Sequencing Problem
    Abstract:
    Mixed Model Production is the practice of assembling several distinct and different models of a product on the same assembly line without changeovers and then sequencing those models in a way that smoothes the demand for upstream components. In this paper, we consider an objective function which minimizes total stoppage time and total idle time and it is presented sequence dependent set up time. Many studies have been done on the mixed model assembly lines. But in this paper we specifically focused on reducing the idle times. This is possible through various help policies. For improving the solutions, some cases developed and about 40 tests problem was considered. We use scatter search for optimization and for showing the efficiency of our algorithm, experimental results shows behavior of method. Scatter search and help policies can produce high quality answers, so it has been used in this paper.
    35
    2042
    Preparation of Computer Model of the Aircraft for Numerical Aeroelasticity Tests – Flutter
    Abstract:
    Article presents the geometry and structure reconstruction procedure of the aircraft model for flatter research (based on the I22-IRYDA aircraft). For reconstruction the Reverse Engineering techniques and advanced surface modeling CAD tools are used. Authors discuss all stages of data acquisition process, computation and analysis of measured data. For acquisition the three dimensional structured light scanner was used. In the further sections, details of reconstruction process are present. Geometry reconstruction procedure transform measured input data (points cloud) into the three dimensional parametric computer model (NURBS solid model) which is compatible with CAD systems. Parallel to the geometry of the aircraft, the internal structure (structural model) are extracted and modeled. In last chapter the evaluation of obtained models are discussed.
    34
    2422
    Kinematic Analysis of a Novel Complex DoF Parallel Manipulator
    Abstract:
    In this research work, a novel parallel manipulator with high positioning and orienting rate is introduced. This mechanism has two rotational and one translational degree of freedom. Kinematics and Jacobian analysis are investigated. Moreover, workspace analysis and optimization has been performed by using genetic algorithm toolbox in Matlab software. Because of decreasing moving elements, it is expected much more better dynamic performance with respect to other counterpart mechanisms with the same degrees of freedom. In addition, using couple of cylindrical and revolute joints increased mechanism ability to have more extended workspace.
    33
    2549
    Effect of Nanofluids on the Saturated Pool Film Boiling
    Abstract:
    In this study, the effect of nanofluids on the pool film boiling was experimentally investigated at saturated condition under atmospheric pressure. For this purpose, four different water-based nanofluids (Al2O3, SiO2, TiO2 and CuO) with 0.1% particle volume fraction were prepared. To investigate the boiling heat transfer, a cylindrical rod with high temperature was used. The rod heated up to high temperatures was immersed into nanofluids. The center temperature of rod during the cooling process was recorded by using a K-type thermocouple. The quenching curves showed that the pool boiling heat transfer was strongly dependent on the nanoparticle materials. During the repetitive quenching tests, the cooling time decreased and thus, the film boiling vanished. Consequently, the primary reason of this was the change of the surface characteristics due to the nanoparticles deposition on the rod-s surface.
    32
    3189
    Numerical Analysis on the Performance of Heatsink with Microchannels
    Abstract:
    In this paper, numerical simulation is used to investigate the thermal performance of liquid cooling heatsink with microchannels due to geometric arrangement. Commercial software ICEPAK is utilized for the analysis. The considered parameters include aspect ratio, porosity and the length and height of microchannel. The aspect ratio varies from 3 to 16 and the length of microchannel is 10mm, 14mm, and 18mm. The height of microchannel is 2mm, 3mm and 4mm. It is found short channel have better thermal efficiency than long channel at 490Pa. No matter the length of channel the best aspect ratio is 4. It is also noted that pressure difference at 2940Pa the best aspect ratio from 4 to 8, it means pressure difference affect aspect ratio, effective thermal resistance at low pressure difference but lower effective thermal resistance at high pressure difference.
    31
    3287
    A Comparative Study of Vapour Compression Heat Pump Systems under Air to Air and Air to Water Mode
    Abstract:

    This research evaluated and compared the thermodynamic performance of heat pump systems which can be run under two different modes as air to air and air to water by using only one compressor. To achieve this comparison an experimental performance study was made on a traditional vapor compressed heat pump system that can be run air to air mode and air to water mode by help of a valve. The experiments made under different thermal conditions. Thermodynamic performance of the systems are presented and compared with each other for different working conditions.

    30
    3653
    Evaluating New Service Development Performance Based on Multigranular Linguistic Assessment
    Abstract:
    The service sector continues to grow and the percentage of GDP accounted for by service industries keeps increasing. The growth and importance of service to an economy is not just a phenomenon of advanced economies, service is now a majority of the world gross domestic products. However, the performance evaluation process of new service development problems generally involves uncertain and imprecise data. This paper presents a 2-tuple fuzzy linguistic computing approach to dealing with heterogeneous information and information loss problems while the processes of subjective evaluation integration. The proposed method based on group decision-making scenario to assist business managers in measuring performance of new service development manipulates the heterogeneity integration processes and avoids the information loss effectively.
    29
    3787
    Nugget Formation during Resistance Spot Welding using Finite Element Model
    Abstract:
    Resistance spot welding process comprises of electric, thermal and mechanical phenomenon, which makes this process complex and highly non-linear and thus, it becomes difficult to model it. In order to obtain good weld nugget during spot welding, hit and trial welds are usually done which is very costly. Therefore the numerical simulation research has been conducted to understand the whole process. In this paper three different cases were analyzed by varying the tip contact area and it was observed that, with the variation of tip contact area the nugget formation at the faying surface is affected. The tip contact area of the welding electrode becomes large with long welding cycles. Therefore in order to maintain consistency of nugget formation during the welding process, the current compensation in control feedback is required. If the contact area of the welding electrode tip is reduced, a large amount of current flows through the faying surface, as a result of which sputtering occurs.
    28
    3977
    Identification of Individual Objects at the Intelligent Assembly Cell
    Abstract:
    In this contribution is presented a complex design of individual objects identification in the workplace of intelligent assembly cell. Intelligent assembly cell is situated at Institute of Manufacturing Systems and Applied Mechanics and is used for pneumatic actuator assembly. Pneumatic actuator components are pneumatic roller, cover, piston and spring. Two identification objects alternatives for assembly are designed in the workplace of industrial robot. In the contribution is evaluated and selected suitable alternative for identification – 2D codes reader. The complex design of individual object identification is going out of intelligent manufacturing systems knowledge. Intelligent assembly and manufacturing systems as systems of new generation are gradually loaded in to the mechanical production, when they are removeing human operation out of production process and they also short production times.
    27
    4345
    Numerical Study of Airfoils Aerodynamic Performance in Heavy Rain Environment
    Abstract:

    Heavy rainfall greatly affects the aerodynamic performance of the aircraft. There are many accidents of aircraft caused by aerodynamic efficiency degradation by heavy rain. In this Paper we have studied the heavy rain effects on the aerodynamic efficiency of cambered NACA 64-210 and symmetric NACA 0012 airfoils. Our results show significant increase in drag and decrease in lift. We used preprocessing software gridgen for creation of geometry and mesh, used fluent as solver and techplot as postprocessor. Discrete phase modeling called DPM is used to model the rain particles using two phase flow approach. The rain particles are assumed to be inert. Both airfoils showed significant decrease in lift and increase in drag in simulated rain environment. The most significant difference between these two airfoils was the NACA 64-210 more sensitivity than NACA 0012 to liquid water content (LWC). We believe that the results showed in this paper will be useful for the designer of the commercial aircrafts and UAVs, and will be helpful for training of the pilots to control the airplanes in heavy rain.

    26
    4624
    Thermal Performance Analysis of Nanofluids in Microchannel Heat Sinks
    Abstract:

    In the present study, the pressure drop and laminar convection heat transfer characteristics of nanofluids in microchannel heat sink with square duct are numerically investigated. The water based nanofluids created with Al2O3 and CuO particles in four different volume fractions of 0%, 0.5%, 1%, 1.5% and 2% are used to analyze their effects on heat transfer and the pressure drop. Under the laminar, steady-state flow conditions, the finite volume method is used to solve the governing equations of heat transfer. Mixture Model is considered to simulate the nanofluid flow. For verification of used numerical method, the results obtained from numerical calculations were compared with the results in literature for both pure water and the nanofluids in different volume fractions. The distributions of the particles in base fluid are assumed to be uniform. The results are evaluated in terms of Nusselt number, the pressure drop and heat transfer enhancement. Analysis shows that the nanofluids enhance heat transfer while the Reynolds number and the volume fractions are increasing. The best overall enhancement was obtained at φ=%2 and Re=100 for CuO-water nanofluid.

    25
    5154
    An Enhance of the Energy Effectiveness of the Convectors Used for Heating or Cooling
    Abstract:
    The objective of this paper is to present a research study of the convectors that are used for heating or cooling of the living room or industrial halls. The key points are experimental measurement and comprehensive numerical simulation of the flow coming throughout the part of the convector such as heat exchanger, input from the fan etc.. From the obtained results, the components of the convector are optimized in sense to increase thermal power efficiency due to improvement of heat convection or reduction of air drag friction. Both optimized aspects are leading to the more effective service conditions and to energy saving. The significant part of the convector research is a design of the unique measurement laboratory and adopting measure techniques. The new laboratory provides possibility to measure thermal power efficiency and other relevant parameters under specific service conditions of the convectors.
    24
    5162
    Flow around Two Cam Shaped Cylinders in Tandem Arrangement
    Abstract:

    In this paper flow around two cam shaped cylinders had been studied numerically. The equivalent diameter of cylinders is 27.6 mm. The space between center to center of two cam shaped cylinders is define as longitudinal pitch ratio and it varies in range of 2 varies in range of 50

    23
    5929
    Ride Control of Passenger Cars with Semi-active Suspension System Using a Linear Quadratic Regulator and Hybrid Optimization Algorithm
    Abstract:
    A semi-active control strategy for suspension systems of passenger cars is presented employing Magnetorheological (MR) dampers. The vehicle is modeled with seven DOFs including the, roll pitch and bounce of car body, and the vertical motion of the four tires. In order to design an optimal controller based on the actuator constraints, a Linear-Quadratic Regulator (LQR) is designed. The design procedure of the LQR consists of selecting two weighting matrices to minimize the energy of the control system. This paper presents a hybrid optimization procedure which is a combination of gradient-based and evolutionary algorithms to choose the weighting matrices with regards to the actuator constraint. The optimization algorithm is defined based on maximum comfort and actuator constraints. It is noted that utilizing the present control algorithm may significantly reduce the vibration response of the passenger car, thus, providing a comfortable ride.
    22
    6002
    The Influence of Water Ingress to Aircraft Cabin Components
    Abstract:
    The accomplished study is based on the appointment and identification of ageing effects and according to this absorption of moisture of aircraft cabin components over the life-cycle. In the first step of the study ceiling panels from same age and from the same aircraft cabin have been examined according to weight changes depending on the position in the aircraft cabin. In the second step of the study different aged ceiling panels have been examined concerning deflection, weight changes and the acoustic sound transmission loss. To prove the assumption of water absorption within the study and with the theoretical background from literature and scientific papers, an older test panel was exposed extreme thermal conditions (humidity and temperature) within a climate chamber to show that there is a general ingress of water to cabin components and that this ingress of water leads to the change of different mechanical properties.
    21
    6201
    Stresses Distribution in Spot, Bonded, and Weld- Bonded Joints during the Process of Axial Load
    Abstract:
    In this study the elastic-plastic stress distribution in weld-bonded joint, fabricated from austenitic stainless steel (AISI 304) sheet of 1.00 mm thickness and Epoxy adhesive Araldite 2011, subjected to axial loading is investigated. This is needed to improve design procedures and welding codes, and saving efforts in the cumbersome experiments and analysis. Therefore, a complete 3-D finite element modelling and analysis of spot welded, bonded and weld-bonded joints under axial loading conditions is carried out. A comprehensive systematic experimental program is conducted to determine many properties and quantities, of the base metals and the adhesive, needed for FE modelling, such like the elastic – plastic properties, modulus of elasticity, fracture limit, the nugget and heat affected zones (HAZ) properties, etc. Consequently, the finite element models developed, for each case, are used to evaluate stresses distributions across the entire joint, in both the elastic and plastic regions. The stress distribution curves are obtained, particularly in the elastic regions and found to be consistent and in excellent agreement with the published data. Furthermore, the stresses distributions are obtained in the weld-bonded joint and display the best results with almost uniform smooth distribution compared to spot and bonded cases. The stress concentration peaks at the edges of the weld-bonded region, are almost eliminated resulting in achieving the strongest joint of all processes.
    20
    6374
    Fracture Characterization of Plain Woven Fabric Glass-Epoxy Composites
    Abstract:

    Delamination between layers in composite materials is a major structural failure. The delamination resistance is quantified by the critical strain energy release rate (SERR). The present investigation deals with the strain energy release rate of two woven fabric composites. Materials used are made of two types of glass fiber (360 gsm and 600 gsm) of plain weave and epoxy as matrix. The fracture behavior is studied using the mode I, double cantilever beam test and the mode II, end notched flexure test, in order to determine the energy required for the initiation and growth of an artificial crack. The delamination energy of these two materials is compared in order to study the effect of weave and reinforcement on mechanical properties. The fracture mechanism is also analyzed by means of scanning electron microscopy (SEM). It is observed that the plain weave fabric composite with lesser strand width has higher inter laminar fracture properties compared to the plain weave fabric composite with more strand width.

    19
    6711
    Effects of Synthetic Jet in Suppressing Cavity Oscillations
    Abstract:
    The three-dimensional incompressible flow past a rectangular open cavity is investigated, where the aspect ratio of the cavity is considered as 4. The principle objective is to use large-eddy simulation to resolve and control the large-scale structures, which are largely responsible for flow oscillations in a cavity. The flow past an open cavity is very common in aerospace applications and can be a cause of acoustic source due to hydrodynamic instability of the shear layer and its interactions with the downstream edge. The unsteady Navier-stokes equations have been solved on a staggered mesh using a symmetry-preserving central difference scheme. Synthetic jet has been used as an active control to suppress the cavity oscillations in wake mode for a Reynolds number of ReD = 3360. The effect of synthetic jet has been studied by varying the jet amplitude and frequency, which is placed at the upstream wall of the cavity. The study indicates that there exits a frequency band, which is larger than a critical value, is effective in attenuating cavity oscillations when blowing ratio is more than 1.0.
    18
    6810
    Transient Solution of an Incompressible Viscous Flow in a Channel with Sudden Expansion/Contraction
    Abstract:
    In this paper, a numerical study has been made to analyze the transient 2-D flows of a viscous incompressible fluid through channels with forward or backward constriction. Problems addressed include flow through sudden contraction and sudden expansion channel geometries with rounded and increasingly sharp reentrant corner. In both the cases, numerical results are presented for the separation and reattachment points, streamlines, vorticity and flow patterns. A fourth order accurate compact scheme has been employed to efficiently capture steady state solutions of the governing equations. It appears from our study that sharpness of the throat in the channel is one of the important parameters to control the strength and size of the separation zone without modifying the general flow patterns. The comparison between the two cases shows that the upstream geometry plays a significant role on vortex growth dynamics.
    17
    7175
    Numerical and Experimental Stress Analysis of Stiffened Cylindrical Composite Shell under Transverse end Load
    Abstract:

    Grid composite structures have many applications in aerospace industry in which deal with transverse loadings abundantly. In present paper a stiffened composite cylindrical shell with clamped-free boundary condition under transverse end load experimentally and numerically was studied. Some electrical strain gauges were employed to measure the strains. Also a finite element analysis was done for validation of experimental result. The FEM software used was ANSYS11. In addition, the results between stiffened composite shell and unstiffened composite shell were compared. It was observed that intersection of two stiffeners has an important effect in decrease of stress in the shell. Fairly good agreements were observed between the numerical and the measured results. According to recent studies about grid composite structures, it should be noted that any investigation like this research has not been reported.

    16
    8838
    A Numerical Approach for Static and Dynamic Analysis of Deformable Journal Bearings
    Abstract:
    This paper presents a numerical approach for the static and dynamic analysis of hydrodynamic radial journal bearings. In the first part, the effect of shaft and housing deformability on pressure distribution within oil film is investigated. An iterative algorithm that couples Reynolds equation with a plane finite elements (FE) structural model is solved. Viscosity-to-pressure dependency (Vogel- Barus equation) is also included. The deformed lubrication gap and the overall stress state are obtained. Numerical results are presented with reference to a typical journal bearing configuration at two different inlet oil temperatures. Obtained results show the great influence of bearing components structural deformation on oil pressure distribution, compared with results for ideally rigid components. In the second part, a numerical approach based on perturbation method is used to compute stiffness and damping matrices, which characterize the journal bearing dynamic behavior.
    15
    9084
    Coupled Lateral-Torsional Free Vibrations Analysis of Laminated Composite Beam using Differential Quadrature Method
    Abstract:

    In this paper the Differential Quadrature Method (DQM) is employed to study the coupled lateral-torsional free vibration behavior of the laminated composite beams. In such structures due to the fiber orientations in various layers, the lateral displacement leads to a twisting moment. The coupling of lateral and torsional vibrations is modeled by the bending-twisting material coupling rigidity. In the present study, in addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies of the beam. The governing differential equations of motion which form a system of three coupled PDEs are solved numerically using DQ procedure under different boundary conditions consist of the combinations of simply, clamped, free and other end conditions. The resulting natural frequencies and mode shapes for cantilever beam are compared with similar results in the literature and good agreement is achieved.

    14
    9278
    Constrained Particle Swarm Optimization of Supply Chains
    Abstract:
    Since supply chains highly impact the financial performance of companies, it is important to optimize and analyze their Key Performance Indicators (KPI). The synergistic combination of Particle Swarm Optimization (PSO) and Monte Carlo simulation is applied to determine the optimal reorder point of warehouses in supply chains. The goal of the optimization is the minimization of the objective function calculated as the linear combination of holding and order costs. The required values of service levels of the warehouses represent non-linear constraints in the PSO. The results illustrate that the developed stochastic simulator and optimization tool is flexible enough to handle complex situations.
    13
    9463
    Airfoils Aerodynamic Efficiency Study in Heavy Rain via Two Phase Flow Approach
    Abstract:

    Heavy rainfall greatly affects the aerodynamic performance of the aircraft. There are many accidents of aircraft caused by aerodynamic efficiency degradation by heavy rain. In this Paper we have studied the heavy rain effects on the aerodynamic efficiency of NACA 64-210 & NACA 0012 airfoils. For our analysis, CFD method and preprocessing grid generator are used as our main analytical tools, and the simulation of rain is accomplished via two phase flow approach-s Discrete Phase Model (DPM). Raindrops are assumed to be non-interacting, non-deforming, non-evaporating and non-spinning spheres. Both airfoil sections exhibited significant reduction in lift and increase in drag for a given lift condition in simulated rain. The most significant difference between these two airfoils was the sensitivity of the NACA 64-210 to liquid water content (LWC), while NACA 0012 performance losses in the rain environment is not a function of LWC . It is expected that the quantitative information gained in this paper will be useful to the operational airline industry and greater effort such as small scale and full scale flight tests should put in this direction to further improve aviation safety.

    12
    9940
    Prediction of the Dynamic Characteristics of a Milling Machine Using the Integrated Model of Machine Frame and Spindle Unit
    Abstract:
    The machining performance is determined by the frequency characteristics of the machine-tool structure and the dynamics of the cutting process. Therefore, the prediction of dynamic vibration behavior of spindle tool system is of great importance for the design of a machine tool capable of high-precision and high-speed machining. The aim of this study is to develop a finite element model to predict the dynamic characteristics of milling machine tool and hence evaluate the influence of the preload of the spindle bearings. To this purpose, a three dimensional spindle bearing model of a high speed engraving spindle tool was created. In this model, the rolling interfaces with contact stiffness defined by Harris model were used to simulate the spindle bearing components. Then a full finite element model of a vertical milling machine was established by coupling the spindle tool unit with the machine frame structure. Using this model, the vibration mode that had a dominant influence on the dynamic stiffness was determined. The results of the finite element simulations reveal that spindle bearing with different preloads greatly affect the dynamic behavior of the spindle tool unit and hence the dynamic responses of the vertical column milling system. These results were validated by performing vibration on the individual spindle tool unit and the milling machine prototype, respectively. We conclude that preload of the spindle bearings is an important component affecting the dynamic characteristics and machining performance of the entire vertical column structure of the milling machine.
    11
    10127
    Heat Transfer from Two Cam Shaped Cylinders in Side-by-Side Arrangement
    Abstract:
    Heat transfer from two cam shape cylinder in side-byside arrangement had been studied numerically. The transverse gap between the centers of cylinders (T) is allowed to vary to change the pitch ratio (T/Deq). The equivalent diameter of the cylinder (Deq) is 27.6 mm and pitch ratio varies in range of 1≤T/Deq≤3. The Reynolds numbers based on equivalent circular cylinder are within 50≤ Reeq≤150. Results show that Nusselt number of cylinders increases about 1 to 36 percent when pitch ratio increases from 1 to 3.
    10
    10146
    Robotics System Design for Assembly and Disassembly Process
    Abstract:
    In this paper is described a new conception of the Cartesian robot for automated assembly and also disassembly process. The advantage of this conception is the utilization the Cartesian assembly robot with its all peripheral automated devices for assembly of the assembled product. The assembly product in the end of the lifecycle can be disassembled with the same Cartesian disassembly robot with the use of the same peripheral automated devices and equipment. It is a new approach to problematic solving and development of the automated assembly systems with respect to lifecycle management of the assembly product and also assembly system with Cartesian robot. It is also important to develop the methodical process for design of automated assembly and disassembly system with Cartesian robot. Assembly and disassembly system use the same Cartesian robot input and output devices, assembly and disassembly units in one workplace with different application. Result of design methodology is the verification and proposition of real automated assembly and disassembly workplace with Cartesian robot for known verified model of assembled actuator.
    9
    11376
    A Heuristic Based Conceptual Framework for Product Innovation
    Abstract:
    This research elaborates decision models for product innovation in the early phases, focusing on one of the most widely implemented method in marketing research: conjoint analysis and the related conjoint-based models with special focus on heuristics programming techniques for the development of optimal product innovation. The concept, potential, requirements and limitations of conjoint analysis and its conjoint-based heuristics successors are analysed and the development of conceptual framework of Genetic Algorithm (GA) as one of the most widely implemented heuristic methods for developing product innovations are discussed.
    8
    11408
    Study of Forging Process in 7075 Aluminum Alloy Professional Bicycle Pedal using Taguchi Method
    Abstract:
    The current of professional bicycle pedal-s manufacturing model mostly used casting, forging, die-casting processing methods, so the paper used 7075 aluminum alloy which is to produce the bicycle parts most commonly, and employs the rigid-plastic finite element (FE) DEFORMTM 3D software to simulate and to analyze the professional bicycle pedal design. First we use Solid works 2010 3D graphics software to design the professional bicycle pedal of the mold and appearance, then import finite element (FE) DEFORMTM 3D software for analysis. The paper used rigid-plastic model analytical methods, and assuming mode to be rigid body. A series of simulation analyses in which the variables depend on different temperature of forging billet, friction factors, forging speed, mold temperature are reveal to effective stress, effective strain, damage and die radial load distribution for forging bicycle pedal. The analysis results hope to provide professional bicycle pedal forming mold references to identified whether suit with the finite element results for high-strength design suitability of aluminum alloy.
    7
    11462
    Comparison of Methods of Testing Composite Slabs
    Abstract:
    Composite steel-concrete slabs using thin-walled corrugated steel sheets with embossments represent a modern and effective combination of steel and concrete. However, the design of new types of sheeting is conditional on the execution of expensive and time-consuming laboratory testing. The effort to develop a cheaper and faster method has lead to many investigations all over the world. In our paper we compare the results from our experiments involving vacuum loading, four-point bending and small-scale shear tests.
    6
    12908
    Development of Predictive Model for Surface Roughness in End Milling of Al-SiCp Metal Matrix Composites using Fuzzy Logic
    Abstract:
    Metal matrix composites have been increasingly used as materials for components in automotive and aerospace industries because of their improved properties compared with non-reinforced alloys. During machining the selection of appropriate machining parameters to produce job for desired surface roughness is of great concern considering the economy of manufacturing process. In this study, a surface roughness prediction model using fuzzy logic is developed for end milling of Al-SiCp metal matrix composite component using carbide end mill cutter. The surface roughness is modeled as a function of spindle speed (N), feed rate (f), depth of cut (d) and the SiCp percentage (S). The predicted values surface roughness is compared with experimental result. The model predicts average percentage error as 4.56% and mean square error as 0.0729. It is observed that surface roughness is most influenced by feed rate, spindle speed and SiC percentage. Depth of cut has least influence.
    5
    13378
    Experimental Study of Light Crude Oil-Water Emulsions
    Abstract:

    This paper made an attempt to investigate the problem associated with enhancement of emulsions of light crude oil-water recovery in an oil field of Algerian Sahara. Measurements were taken through experiments using RheoStress (RS600). Factors such as shear rate, temperature and light oil concentration on the viscosity behavior were considered. Experimental measurements were performed in terms of shear stress–shear rate, yield stress and flow index on mixture of light crude oil–water. The rheological behavior of emulsion showed Non-Newtonian shear thinning behavior (Herschel-Bulkley). The experiments done in the laboratory showed the stability of some water in light crude oil emulsions form during consolidate oil recovery process. To break the emulsion using additives may involve higher cost and could be very expensive. Therefore, further research should be directed to find solution of these problems that have been encountered.

    4
    13635
    Nanopaper Innovation in Paper and Packaging Industry
    Abstract:
    Nowadays due to globalization of economy and competition environment, innovation and technology plays key role at creation of wealth and economic growth of countries. In fact prompt growth of practical and technologic knowledge may results in social benefits for countries when changes into effective innovation. Considering the importance of innovation for the development of countries, this study addresses the radical technological innovation introduced by nanopapers at different stages of producing paper including stock preparation, using authorized additives, fillers and pigments, using retention, calender, stages of producing conductive paper, porous nanopaper and Layer by layer self-assembly. Research results show that in coming years the jungle related products will lose considerable portion of their market share, unless embracing radical innovation. Although incremental innovations can make this industry still competitive in mid-term, but to have economic growth and competitive advantage in long term, radical innovations are necessary. Radical innovations can lead to new products and materials which their applications in packaging industry can produce value added. However application of nanotechnology in this industry can be costly, it can be done in cooperation with other industries to make the maximum use of nanotechnology possible. Therefore this technology can be used in all the production process resulting in the mass production of simple and flexible papers with low cost and special properties such as facility at shape, form, easy transportation, light weight, recovery and recycle marketing abilities, and sealing. Improving the resistance of the packaging materials without reducing the performance of packaging materials enhances the quality and the value added of packaging. Improving the cellulose at nano scale can have considerable electron optical and magnetic effects leading to improvement in packaging and value added. Comparing to the specifications of thermoplastic products and ordinary papers, nanopapers show much better performance in terms of effective mechanical indexes such as the modulus of elasticity, tensile strength, and strain-stress. In densities lower than 640 kgm -3, due to the network structure of nanofibers and the balanced and randomized distribution of NFC in flat space, these specifications will even improve more. For nanopapers, strains are 1,4Gpa, 84Mpa and 17%, 13,3 Gpa, 214Mpa and 10% respectively. In layer by layer self assembly method (LbL) the tensile strength of nanopaper with Tio3 particles and Sio2 and halloysite clay nanotube are 30,4 ±7.6Nm/g and 13,6 ±0.8Nm/g and 14±0.3,3Nm/g respectively that fall within acceptable range of similar samples with virgin fiber. The usage of improved brightness and porosity index in nanopapers can create more competitive advantages at packaging industry.
    3
    13673
    Numerical Simulation for the Formability Prediction of the Laser Welded Blanks (TWB)
    Abstract:
    Tailor-welded Blanks (TWBs) are tailor made for different complex component designs by welding multiple metal sheets with different thicknesses, shapes, coatings or strengths prior to forming. In this study the Hemispherical Die Stretching (HDS) test (out-of-plane stretching) of TWBs were simulated via ABAQUS/Explicit to obtain the Forming Limit Diagrams (FLDs) of Stainless steel (AISI 304) laser welded blanks with different thicknesses. Two criteria were used to detect the start of necking to determine the FLD for TWBs and parent sheet metals. These two criteria are the second derivatives of the major and thickness strains that are given from the strain history of simulation. In the other word, in these criteria necking starts when the second derivative of thickness or major strain reaches its maximum. With having the time of onset necking, one can measure the major and minor strains at the critical area and determine the forming limit curve.
    2
    14918
    Dry Sliding Wear Behavior of Epoxy-Rubber Dust Composites
    Abstract:
    Composite pins of rubber dust collected from tyre retreading centres of trucks, cars and buses etc.and epoxy with weight percentages of 10. 15, and 20 % of rubber (weight fractions of 9, 13 and 17 % respectively) have been prepared in house with the help of a split wooden mould. The pins were tested in a pin-on-disc wear monitor to determine the co-efficient of friction and weight losses with varying speeds, loads and time. The wear volume and wear rates have also been found out for all these three specimens.. It is observed that all the specimens have exhibited very low coefficient of friction and low wear rates under dry sliding condition. Out of the above three samples tested, the specimen with 10 % rubber dust by weight has shown lowest wear rates. However a peculiar result i.e decreasing trend has been obtained with 20% reinforcement of rubber in epoxy while rubbed against steel at varying speeds. This might have occurred due to high surface finish of the disc and formation of a thin transfer layer from the composite
    1
    15957
    Incident Shock Wave Interaction with an Axisymmetric Cone Body Placed in Shock Tube
    Authors:
    Abstract:

    This work presents a numerical simulation of the interaction of an incident shock wave propagates from the left to the right with a cone placed in a tube at shock. The Mathematical model is based on a non stationary, viscous and axisymmetric flow. The Discretization of the Navier-stokes equations is carried out by the finite volume method in the integral form along with the Flux Vector Splitting method of Van Leer. Here, adequate combination of time stepping parameter, CFL coefficient and mesh size level is selected to ensure numerical convergence. The numerical simulation considers a shock tube filled with air. The incident shock wave propagates to the right with a determined Mach number and crosses the cone by leaving behind it a stationary detached shock wave in front of the nose cone. This type of interaction is observed according to the time of flow.