Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 7

Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering

  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 7
    Design Consideration of a Plastic Shredder in Recycling Processes

    Plastic waste management has emerged as one of the greatest challenges facing developing countries. This paper describes the design of various components of a plastic shredder. This machine is widely used in industries and recycling plants. The introduction of plastic shredder machine will promote reduction of post-consumer plastic waste accumulation and serves as a system for wealth creation and empowerment through conversion of waste into economically viable products. In this design research, a 10 kW electric motor with a rotational speed of 500 rpm was chosen to drive the shredder. A pulley size of 400 mm is mounted on the electric motor at a distance of 1000 mm away from the shredder pulley. The shredder rotational speed is 300 rpm.

    Tracked Robot with Blade Arms to Enhance Crawling Capability

    This paper presents a tracked robot with blade arms powered to assist movement in difficult environments. As a result, the tracked robot is able to pass a ramp or climb stairs. The main feature is a pair of blade arms on both sides of the vehicle body working in collaboration with previously validated transformable track system. When the robot encounters an obstacle in a terrain, it enlists the blade arms with power to overcome the obstacle. In disaster areas, there usually will be terrains that are full of broken and complicated slopes, broken walls, rubbles, and ditches. Thereupon, a robot, which is instructed to pass through such disaster areas, needs to have a good off-road capability for such complicated terrains. The robot with crawling-assisting blade arms would overcome the obstacles along the terrains, and possibly become to be a rescue robot. A prototype has been developed and built; experiments were carried out to validate the enhanced crawling capability of the robot.

    Thermal Radiation and Noise Safety Assessment of an Offshore Platform Flare Stack as Sudden Emergency Relief Takes Place

    To study the potential hazards of the sudden emergency relief of flare stack, the thermal radiation and noise calculation of flare stack is carried out by using Flaresim program 2.0. Thermal radiation and noise analysis should be considered as the sudden emergency relief takes place. According to the Flaresim software simulation results, the thermal radiation and noise meet the requirement.

    Finite Element Analysis of Ball-Joint Boots under Environmental and Endurance Tests

    Ball joints support and guide certain automotive parts that move relative to the frame of the vehicle. Such ball joints are covered and protected from dust, mud, and other interfering materials by ball-joint boots made of rubber—a flexible and near-incompressible material. The boots may experience twisting and bending deformations because of the motion of the joint arm. Thus, environmental and endurance tests of ball-joint boots apply both bending and twisting deformations. In this study, environmental and endurance testing was simulated via the finite element method performed by using a commercial software package. The ranges of principal stress and principal strain values that are known to directly affect the fatigue lives of the parts were sought. By defining these ranges, the number of iterative tests and modifications of the materials and dimensions of the boot can be decreased. Therefore, instead of performing actual part tests, manufacturers can perform standard fatigue tests in trials of different materials by applying only the defined range of stress or strain values.

    Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms
    In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.
    Iterative Learning Control of Two Coupled Nonlinear Spherical Tanks
    This paper presents modeling and control of a highly nonlinear system including, non-interacting two spherical tanks using iterative learning control (ILC). Consequently, the objective of the paper is to control the liquid levels in the nonlinear tanks. First, a proportional-integral-derivative (PID) controller is applied to the plant model as a suitable benchmark for comparison. Then, dynamic responses of the control system corresponding to different step inputs are investigated. It is found that the conventional PID control is not able to fulfill the design criteria such as desired time constant. Consequently, an iterative learning controller is proposed to accurately control the coupled nonlinear tanks system. The simulation results clearly demonstrate the superiority of the presented ILC approach over the conventional PID controller to cope with the nonlinearities presented in the dynamic system.
    A Theoretical Analysis for Modeling and Prediction of the Jet Engine Emissions

    This paper is to formulate a mathematical model to predict the amounts of the emissions produced from the combustion process of the gas turbine unit of the jet engine. These emissions have bad impacts on the environment if they are out of standards, which cause real threats to all type of life on the earth. The amounts of the emissions from the gas turbine engine are functions to many operational and design factors. In landing-takeoff (LTO) these amounts are not the same as in taxi or cruise of the plane using jet engines, because of the difference in the activity period during these operating modes. These emissions can be affected by several physical and chemical variables, such as fuel type, fuel to air ratio or equivalence ratio, flame temperature, combustion pressure, in addition to some inlet conditions such as ambient temperature and air humidity. To study the influence of these variables on the amounts of these emissions during the combustion process in the gas turbine unit, a computer program has been developed by using the visual basic 6 software. Here, the analysis of the combustion process is carried out by considering it as a chemical reaction with shifting equilibrium to find the products of the combustion of the octane fuel, at different equivalence ratios, compressor pressure ratios (CPR) and combustion temperatures. The results obtained have shown that there is noticeable influence of the equivalence ratio, CPR, and the combustion temperature on the amounts of the main emissions which are considered pollutants, such as CO, CO2 and NO.