Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 9

Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering

  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 9
    Aqueous Extract of Flacourtia indica Prevents Carbon Tetrachloride Induced Hepatotoxicity in Rat
    Carbon tetrachloride (CCl4) is a well-known hepatotoxin and exposure to this chemical is known to induce oxidative stress and causes liver injury by the formation of free radicals. Flacourtia indica commonly known as 'Baichi' has been reported as an effective remedy for the treatment of a variety of diseases. The objective of this study was to investigate the hepatoprotective activity of aqueous extract of leaves of Flacourtia indica against CCl4 induced hepatotoxicity. Animals were pretreated with the aqueous extract of Flacourtia indica (250 & 500 mg/kg body weight) for one week and then challenged with CCl4 (1.5 ml/kg bw) in olive oil (1:1, v/v) on 7th day. Serum marker enzymes (ALP, AST, ALT, Total Protein & Total Bilirubin) and TBARS level (Marker for oxidative stress) were estimated in all the study groups. Alteration in the levels of biochemical markers of hepatic damage like AST, ALT, ALP, Total Protein, Total Bilirubin and lipid peroxides (TBARS) were tested in both CCl4 treated and extract treated groups. CCl4 has enhanced the AST, ALT, ALP and the Lipid peroxides (TBARS) in liver. Treatment of aqueous extract of Flacourtia indica leaves (250 & 500 mg/kg) exhibited a significant protective effect by altering the serum levels of AST, ALT, ALP, Total Protein, Total Bilirubin and liver TBARS. These biochemical observations were supported by histopathological study of liver sections. From this preliminary study it has been concluded that the aqueous extract of the leaves of Flacourtia indica protects liver against oxidative damages and could be used as an effective protector against CCl4 induced hepatic damage. Our findings suggested that Flacourtia indica possessed good hepatoprotective activity
    Energy Distribution of EEG Signals: EEG Signal Wavelet-Neural Network Classifier

    In this paper, a wavelet-based neural network (WNN) classifier for recognizing EEG signals is implemented and tested under three sets EEG signals (healthy subjects, patients with epilepsy and patients with epileptic syndrome during the seizure). First, the Discrete Wavelet Transform (DWT) with the Multi-Resolution Analysis (MRA) is applied to decompose EEG signal at resolution levels of the components of the EEG signal (δ, θ, α, β and γ) and the Parseval-s theorem are employed to extract the percentage distribution of energy features of the EEG signal at different resolution levels. Second, the neural network (NN) classifies these extracted features to identify the EEGs type according to the percentage distribution of energy features. The performance of the proposed algorithm has been evaluated using in total 300 EEG signals. The results showed that the proposed classifier has the ability of recognizing and classifying EEG signals efficiently.

    A New Rigid Fistulectomy Set for Minimally Invasive “Core-Out“ Excision of High Anal Fistulas
    In this article, we propose a new surgical device for circumferentially excision of high anal fistulas in a minimally invasive manner. The new apparatus works on the basis of axially rotating and moving a tubular blade along a fistulous tract straightened using a rigid straight guidewire. As the blade moves along the tract, its sharp circular cutting edge circumferentially separates approximately 2.25 mm thickness of tract encircling the rigid guidewire. We used the new set to excise two anal fistulas in a 62-year-old male patient, an extrasphincteric type and a long tract with no internal opening. With regard to the results of this test, the new device can be considered as a sphincter preserving mechanism for treatment of high anal fistulas. Consequently, a major reduction in the risk of fecal incontinence, recurrence rate, convalescence period and patient morbidity may be achieved using the new device for treatment of fistula-in-ano.
    Histopathological and Morphological Defects in the Mice Prenatally Exposed to Low EMF
    This research was carried out to determine the possible effects of low electromagnetic field (EMF) exposure to the developing mice fetuses. Pregnant mice were exposed to EMF exposure at 0mT (sham) and 1.2 mT for six hours per session, carried out on gestation day 3, 6, 9, 12 and 15. Samples from the stillborn offspring were observed for morphological defects. The heart didn-t show progressive cellular damage, the lungs were congested and emphysemics. The bones were in advance stage of hypertrophy. Spectrums of morphological defects were observed over 70% of the surviving offspring. These results indicate that even at lower exposure to low EMF, is enough to induce morphological defects in prenatal mice.
    Identification of Cardiac Arrhythmias using Natural Resonance Complex Frequencies
    An electrocardiogram (ECG) feature extraction system based on the calculation of the complex resonance frequency employing Prony-s method is developed. Prony-s method is applied on five different classes of ECG signals- arrhythmia as a finite sum of exponentials depending on the signal-s poles and the resonant complex frequencies. Those poles and resonance frequencies of the ECG signals- arrhythmia are evaluated for a large number of each arrhythmia. The ECG signals of lead II (ML II) were taken from MIT-BIH database for five different types. These are the ventricular couplet (VC), ventricular tachycardia (VT), ventricular bigeminy (VB), and ventricular fibrillation (VF) and the normal (NR). This novel method can be extended to any number of arrhythmias. Different classification techniques were tried using neural networks (NN), K nearest neighbor (KNN), linear discriminant analysis (LDA) and multi-class support vector machine (MC-SVM).
    An Adaptive Mammographic Image Enhancement in Orthogonal Polynomials Domain
    X-ray mammography is the most effective method for the early detection of breast diseases. However, the typical diagnostic signs such as microcalcifications and masses are difficult to detect because mammograms are of low-contrast and noisy. In this paper, a new algorithm for image denoising and enhancement in Orthogonal Polynomials Transformation (OPT) is proposed for radiologists to screen mammograms. In this method, a set of OPT edge coefficients are scaled to a new set by a scale factor called OPT scale factor. The new set of coefficients is then inverse transformed resulting in contrast improved image. Applications of the proposed method to mammograms with subtle lesions are shown. To validate the effectiveness of the proposed method, we compare the results to those obtained by the Histogram Equalization (HE) and the Unsharp Masking (UM) methods. Our preliminary results strongly suggest that the proposed method offers considerably improved enhancement capability over the HE and UM methods.
    Effect of Muscle Loss on Hip Muscular Effort during the Swing Phase of Transfemoral Amputee Gait: A Simulation Study
    The effect of muscle loss due to transfemoral amputation, on energy expenditure of hip joint and individual residual muscles was simulated. During swing phase of gait, with each muscle as an ideal force generator, the lower extremity was modeled as a two-degree of freedom linkage, for which hip and knee were joints. According to results, muscle loss will not lead to higher energy expenditure of hip joint, as long as other parameters of limb remain unaffected. This finding maybe due to the role of biarticular muscles in hip and knee joints motion. Moreover, if hip flexors are removed from the residual limb, residual flexors, and if hip extensors are removed, residual extensors will do more work. In line with the common practice in transfemoral amputation, this result demonstrates during transfemoral amputation, it is important to maintain the length of residual limb as much as possible.
    Investigation of Anti-diabetic and Hypocholesterolemic Potential of Psyllium Husk Fiber (Plantago psyllium) in Diabetic and Hypercholesterolemic Albino Rats
    The present study was conducted to observe the effect of Plantago psyllium on blood glucose and cholesterol levels in normal and alloxan induced diabetic rats. To investigate the effect of Plantago psyllium 40 rats were included in this study divided into four groups of ten rats in each group. One group A was normal, second group B was diabetic, third group C was non diabetic and hypercholesterolemic and fourth group D was diabetic and hypercholesterolemic. Two groups B and D were made diabetic by intraperitonial injection of alloxan dissolved in 1mL distilled water at a dose of 125mg/Kg of body weight. Two groups C and D were made hypercholesterolemic by oral administration of powder cholesterol (1g/Kg of body weight). The blood samples from all the rats were collected from coccygial vein on 1st day, then on 21st and 42nd day respectively. All the samples were analyzed for blood glucose and cholesterol level by using enzymatic kits. The blood glucose and cholesterol levels of treated groups of rats showed significant reduction after 7 weeks of treatment with Plantago psyllium. By statistical analysis of results it was found that Plantago psyllium has anti-diabetic and hypocholesterolemic activity in diabetic and hypercholesterolemic albino rats.
    Presenting a Combinatorial Feature to Estimate Depth of Anesthesia
    Determining depth of anesthesia is a challenging problem in the context of biomedical signal processing. Various methods have been suggested to determine a quantitative index as depth of anesthesia, but most of these methods suffer from high sensitivity during the surgery. A novel method based on energy scattering of samples in the wavelet domain is suggested to represent the basic content of electroencephalogram (EEG) signal. In this method, first EEG signal is decomposed into different sub-bands, then samples are squared and energy of samples sequence is constructed through each scale and time, which is normalized and finally entropy of the resulted sequences is suggested as a reliable index. Empirical Results showed that applying the proposed method to the EEG signals can classify the awake, moderate and deep anesthesia states similar to BIS.