Excellence in Research and Innovation for Humanity

International Science Index

Commenced in January 1999 Frequency: Monthly Edition: International Paper Count: 17

Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering

  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 17
    Proactive Identification of False Alert for Drug-Drug Interaction
    Researchers of drug-drug interaction alert systems have often suggested that there were high overridden rate for alerts and also too false alerts. However, research about decreasing false alerts is scant. Therefore, the aim of this article attempts to proactive identification of false alert for drug-drug interaction and provide solution to decrease false alerts. This research involved retrospective analysis prescribing database and calculated false alert rate by using MYSQL and JAVA. Results of this study showed 17% of false alerts and the false alert rate in the hospitals (37%) was more than in the clinics. To conclude, this study described the importance that drug-drug interaction alert system should not only detect drug name but also detect frequency or route, as well as in providing solution to decrease false alerts.
    PCR based Detection of Food Borne Pathogens
    Many high-risk pathogens that cause disease in humans are transmitted through various food items. Food-borne disease constitutes a major public health problem. Assessment of the quality and safety of foods is important in human health. Rapid and easy detection of pathogenic organisms will facilitate precautionary measures to maintain healthy food. The Polymerase Chain Reaction (PCR) is a handy tool for rapid detection of low numbers of bacteria. We have designed gene specific primers for most common food borne pathogens such as Staphylococci, Salmonella and E.coli. Bacteria were isolated from food samples of various food outlets and identified using gene specific PCRs. We identified Staphylococci, Salmonella and E.coli O157 using gene specific primers by rapid and direct PCR technique in various food samples. This study helps us in getting a complete picture of the various pathogens that threaten to cause and spread food borne diseases and it would also enable establishment of a routine procedure and methodology for rapid identification of food borne bacteria using the rapid technique of direct PCR. This study will also enable us to judge the efficiency of present food safety steps taken by food manufacturers and exporters.
    Analysis of the EEG Signal for a Practical Biometric System
    This paper discusses the effectiveness of the EEG signal for human identification using four or less of channels of two different types of EEG recordings. Studies have shown that the EEG signal has biometric potential because signal varies from person to person and impossible to replicate and steal. Data were collected from 10 male subjects while resting with eyes open and eyes closed in 5 separate sessions conducted over a course of two weeks. Features were extracted using the wavelet packet decomposition and analyzed to obtain the feature vectors. Subsequently, the neural networks algorithm was used to classify the feature vectors. Results show that, whether or not the subjects- eyes were open are insignificant for a 4– channel biometrics system with a classification rate of 81%. However, for a 2–channel system, the P4 channel should not be included if data is acquired with the subjects- eyes open. It was observed that for 2– channel system using only the C3 and C4 channels, a classification rate of 71% was achieved.
    Single Input ANC for Suppression of Breath Sound
    Various sounds generated in the chest are included in auscultation sound. Adaptive Noise Canceller (ANC) is one of the useful techniques for biomedical signal. But the ANC is not suitable for auscultation sound. Because the ANC needs two input channels as a primary signal and a reference signals, but a stethoscope can provide just one input sound. Therefore, in this paper, it was proposed the Single Input ANC (SIANC) for suppression of breath sound in a cardiac auscultation sound. For the SIANC, it was proposed that the reference generation system which included Heart Sound Detector, Control and Reference Generator. By experiment and comparison, it was confirmed that the proposed SIANC was efficient for heart sound enhancement and it was independent of variations of a heartbeat.
    Antibacterial Capacity of Plumeria alba Petals
    Antibacterial activity of Plumeria alba (Frangipani) petals methanolic extracts were evaluated against Escherichia coli, Proteus vulgaris,Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus saprophyticus, Enterococcus faecalis and Serratia marcescens by using disk diffusion method. Concentration extracts (80 %) showed the highest inhibition zone towards Escherichia coli (14.3 mm). Frangipani extract also showed high antibacterial activity against Staphylococcus saprophyticus, Proteus vulgaris and Serratia marcescens, but not more than the zones of the positive control used. Comparison between two broad specrum antibiotics to frangipani extracts showed that the 80 % concentration extracts produce the same zone of inhibition as Streptomycin. Frangipani extracts showed no bacterial activity towards Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis. There are differences in the sensitivity of different bacteria to frangipani extracts, suggesting that frangipani-s potency varies between these bacteria. The present results indicate that frangipani showed significant antibacterial activity especially to Escherichia coli.
    A Novel Method Based on Monte Carlo for Simulation of Variable Resolution X-ray CT Scanner: Measurement of System Presampling MTF
    The purpose of this work is measurement of the system presampling MTF of a variable resolution x-ray (VRX) CT scanner. In this paper, we used the parameters of an actual VRX CT scanner for simulation and study of effect of different focal spot sizes on system presampling MTF by Monte Carlo method (GATE simulation software). Focal spot size of 0.6 mm limited the spatial resolution of the system to 5.5 cy/mm at incident angles of below 17º for cell#1. By focal spot size of 0.3 mm the spatial resolution increased up to 11 cy/mm and the limiting effect of focal spot size appeared at incident angles of below 9º. The focal spot size of 0.3 mm could improve the spatial resolution to some extent but because of magnification non-uniformity, there is a 10 cy/mm difference between spatial resolution of cell#1 and cell#256. The focal spot size of 0.1 mm acted as an ideal point source for this system. The spatial resolution increased to more than 35 cy/mm and at all incident angles the spatial resolution was a function of incident angle. By the way focal spot size of 0.1 mm minimized the effect of magnification nonuniformity.
    Comparison of MFCC and Cepstral Coefficients as a Feature Set for PCG Biometric Systems
    Heart sound is an acoustic signal and many techniques used nowadays for human recognition tasks borrow speech recognition techniques. One popular choice for feature extraction of accoustic signals is the Mel Frequency Cepstral Coefficients (MFCC) which maps the signal onto a non-linear Mel-Scale that mimics the human hearing. However the Mel-Scale is almost linear in the frequency region of heart sounds and thus should produce similar results with the standard cepstral coefficients (CC). In this paper, MFCC is investigated to see if it produces superior results for PCG based human identification system compared to CC. Results show that the MFCC system is still superior to CC despite linear filter-banks in the lower frequency range, giving up to 95% correct recognition rate for MFCC and 90% for CC. Further experiments show that the high recognition rate is due to the implementation of filter-banks and not from Mel-Scaling.
    A New Approach to ECG Biometric Systems: A Comparitive Study between LPC and WPD Systems

    In this paper, a novel method for a biometric system based on the ECG signal is proposed, using spectral coefficients computed through linear predictive coding (LPC). ECG biometric systems have traditionally incorporated characteristics of fiducial points of the ECG signal as the feature set. These systems have been shown to contain loopholes and thus a non-fiducial system allows for tighter security. In the proposed system, incorporating non-fiducial features from the LPC spectrum produced a segment and subject recognition rate of 99.52% and 100% respectively. The recognition rates outperformed the biometric system that is based on the wavelet packet decomposition (WPD) algorithm in terms of recognition rates and computation time. This allows for LPC to be used in a practical ECG biometric system that requires fast, stringent and accurate recognition.

    Building an Inferential Model between Caregivers and Patients by using RFID
    Nosocomial (i.e., hospital-acquired) infections (NI) is a major cause of morbidity and mortality in hospitals. NI rate is higher in intensive care units (ICU) than in the general ward due to patients with severe symptoms, poor immunity, and accepted many invasive therapies. Contact behaviors between health caregivers and patients is one of the infect factors. It is difficult to obtain complete contact records by traditional method of retrospective analysis of medical records. This paper establishes a contact history inferential model (CHIM) intended to extend the use of Proximity Sensing of rapid frequency identification (RFID) technology to transferring all proximity events between health caregivers and patients into clinical events (close-in events, contact events and invasive events).The results of the study indicated that the CHIM can infer proximity care activities into close-in events and contact events. The infection control team could redesign and build optimal workflow in the ICU according to the patient-specific contact history which provided by our automatic tracing system.
    Some Peculiarities of Growth and Functional Activity of Escherichia coli Strain from Probiotic Formula “ASAP“

    It has been shown that pH 7,3 and 37 0C are the optimal condition for the growth of E. coli “ASAP". The cells grow well on Glucose, Lactose, D-Mannitol, D-Sorbitol, (+)-Xylose, L- (+)-Arabinose and Dulcitol. No growth has been observed on Sucrose, Inositol, Phenylalanine, and Tryptophan. The strain is sensitive to a range of antibiotics. The present study has demonstrated that E. coli “ASAP" inhibit the growth of S. enterica ATCC #700931 in vitro. The studies on conjugating activity has revealed no conjugant of E. coli “ASAP" with plasmid strains E. coli G35#59 and S. enterica ATCC #700931. On the other hand, the conjugants with low frequencies were obtained from E. coli “ASAP" with E. coli G35#61, and E. coli “ASAP" with randomly chosen isolate from healthy human gut microflora: E. coli E6. The results of present study have demonstrated improvements in gut microflora condition of patients with different diseases after the administration of “ASAP"

    Seed-Based Region Growing (SBRG) vs Adaptive Network-Based Inference System (ANFIS) vs Fuzzyc-Means (FCM): Brain Abnormalities Segmentation

    Segmentation of Magnetic Resonance Imaging (MRI) images is the most challenging problems in medical imaging. This paper compares the performances of Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS) and Fuzzy c-Means (FCM) in brain abnormalities segmentation. Controlled experimental data is used, which designed in such a way that prior knowledge of the size of the abnormalities are known. This is done by cutting various sizes of abnormalities and pasting it onto normal brain tissues. The normal tissues or the background are divided into three different categories. The segmentation is done with fifty seven data of each category. The knowledge of the size of the abnormalities by the number of pixels are then compared with segmentation results of three techniques proposed. It was proven that the ANFIS returns the best segmentation performances in light abnormalities, whereas the SBRG on the other hand performed well in dark abnormalities segmentation.

    A Data Warehouse System to Help Assist Breast Cancer Screening in Diagnosis, Education and Research
    Early detection of breast cancer is considered as a major public health issue. Breast cancer screening is not generalized to the entire population due to a lack of resources, staff and appropriate tools. Systematic screening can result in a volume of data which can not be managed by present computer architecture, either in terms of storage capabilities or in terms of exploitation tools. We propose in this paper to design and develop a data warehouse system in radiology-senology (DWRS). The aim of such a system is on one hand, to support this important volume of information providing from multiple sources of data and images and for the other hand, to help assist breast cancer screening in diagnosis, education and research.
    Vessel Inscribed Trigonometry to Measure the Vessel Progressive Orientations in the Digital Fundus Image

    In this paper, the vessel inscribed trigonometry (VITM) for the vessel progression orientation (VPO) is proposed in the two-dimensional fundus image. The VPO is a major factor in the optic disc (OD) detection which is a basic process in the retina analysis. To measure the VPO, skeletons of vessel are used. First, the vessels are classified into three classes as vessel end, vessel branch and vessel stem. And the chain code maps of VS are generated. Next, two farthest neighborhoods of each point on VS are searched by the proposed angle restriction. Lastly, a gradient of the straight line between two farthest neighborhoods is estimated to measure the VPO. VITM is validated by comparing with manual results and 2D Gaussian templates. It is confirmed that VPO of the proposed mensuration is correct enough to detect OD from the results of experiment which applied VITM to detect OD in fundus images.

    Measuring the Efficiency of Medical Equipment
    the reliability analysis of the medical equipments can help to increase the availability and the efficiency of the systems. In this manuscript we present a simple method of decomposition that could be easily applied on the complex medical systems. Using this method we can easily calculate the effect of the subsystems or components on the reliability of the overall system. Furthermore, to investigate the effect of subsystems or components on system performance, we perform a numerical study varying every time the worst reliability of subsystem or component with another which has higher reliability. It can also be useful to engineers and designers of medical equipment, who wishes to optimize the complex systems.
    A New Biologically Inspired Pattern Recognition Spproach for Face Recognition

    This paper reports a new pattern recognition approach for face recognition. The biological model of light receptors - cones and rods in human eyes and the way they are associated with pattern vision in human vision forms the basis of this approach. The functional model is simulated using CWD and WPD. The paper also discusses the experiments performed for face recognition using the features extracted from images in the AT & T face database. Artificial Neural Network and k- Nearest Neighbour classifier algorithms are employed for the recognition purpose. A feature vector is formed for each of the face images in the database and recognition accuracies are computed and compared using the classifiers. Simulation results show that the proposed method outperforms traditional way of feature extraction methods prevailing for pattern recognition in terms of recognition accuracy for face images with pose and illumination variations.

    A new Cellular Automata Model of Cardiac Action Potential Propagation based on Summation of Excited Neighbors
    The heart tissue is an excitable media. A Cellular Automata is a type of model that can be used to model cardiac action potential propagation. One of the advantages of this approach against the methods based on differential equations is its high speed in large scale simulations. Recent cellular automata models are not able to avoid flat edges in the result patterns or have large neighborhoods. In this paper, we present a new model to eliminate flat edges by minimum number of neighbors.
    A Study on Cancer-Cell Invasion Based On the Diffuse Interface Model

    In this study, a three-dimensional haptotaxis model to simulate the migration of a population of cancer cells has been proposed. The invasion of cancer cells is related with the hapto-attractant and the effect of the interface energies between the cells and the ECM. The diffuse interface model, which incorporates the haptotaxis mechanism and interface energies, is employed. The semi-implicit Fourier spectral scheme is adopted for efficient evaluation of the simulation. The simulation results thoroughly reveal the dynamics of cancer-cell migration.